Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-23T01:56:17.541Z Has data issue: false hasContentIssue false

Thermodynamic Modeling of Neptunium(V) Solubility in Concentrated Na-CO3-HCO3-Cl-ClO4-H-OH-H2O Systems

Published online by Cambridge University Press:  15 February 2011

Craig F. Novak
Affiliation:
Sandia National Laboratories, MS 1320, P.O. Box 5800, Albuquerque, NM 87185-1320USA
Kevin E. Roberts
Affiliation:
Lawrence Berkeley Laboratory, MS 70A-1115, 1 Cyclotron Road, Berkeley, CA 94270USA
Get access

Abstract

Safety assessments of nuclear waste repositories often require estimation of actinide solubilities as they vary with groundwater composition. Although a considerable amount of research has been done on the solubility and speciation of actinides,1,2 relatively little has been done to unify these data into a model applicable to concentrated brines. Numerous authors report data on the aqueous chemical properties of Np(V) in NaClO4, Na2CO3, and NaCl media, but a consistent thermodynamic model for predicting these properties is not available. To meet this need, a model was developed to describe the solubility of Np(V) in Na-Cl-ClO4-CO3 aqueous systems, based on the Pitzer activity coefficient formalism for concentrated electrolytes. Hydrolysis and/or carbonate complexation are the dominant aqueous reactions with the neptunyl ion in these systems. Literature data for neptunyl ion extraction and solubility are used to parameterize an integrated model for Np(V) solubility in the Np(V)-Na-CO3-HCO3-Cl-ClO4-H-OH-H2O system. The resulting model is tested against additional solubility and extraction data, and compared with Np(V) solubility experiments in complex synthetic brines.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fuger, J., Khodakovsky, I.L., Sergeyeva, E.I., Medvedev, V.A., and Navratil, J.D., The Chemical Thermodynamics of Actinide Elements and Compounds: Part 12: The Actinide Aqueous Inorganic Complexes, (International Atomic Energy Agency, Vienna, Austria, 1992).Google Scholar
2 Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H., Chemical Thermodynamics of Uranium, edited by Wanner, H. and Forest, I., (Elsevier Science Publishers, Amsterdam, The Netherlands, 1992).Google Scholar
3 Pitzer, K.S., in Activity Coefficients in Electrolyte Solutions, edited by Pitzer, K.S., (CRC Press, Boca Raton, Florida, 1991), pp. 75154.Google Scholar
4 Harvie, C.E., Møller, N., and Weare, J.H., Geochim. Cosmochim. Acta 48, 723751 (1984).Google Scholar
5 Felmy, A.R. and Weare, J.H., Geochim. Cosmochim. Acta 50, 27712783 (1986).Google Scholar
6 Felmy, A.R., Rai, D., Schramke, J.A., and Ryan, J.L., Radiochim. Acta 48, 2935 (1989).Google Scholar
7 Felmy, A.R., Rai, D., and Fulton, R.W., Radiochim. Acta 50, 193204 (1990).Google Scholar
8 Felmy, A.R., Rai, D., and Mason, M.J., Radiochim. Acta 55, 177185 (1991).Google Scholar
9 Felmy, A.R. and Rai, D., J. Soln. Chem. 21 (5), 407423 (1992).Google Scholar
10 Grenthe, I. and Wanner, H., Guidelines for the Extrapolation to Zero Ionic Strength, NEA-TBD-2, Revision 2, (OECD Nuclear Energy Agency, Gif-sur-Yvette, France, 1992).Google Scholar
11 Clark, D.L., Hobart, D.E., and Neu, M.P., "Actinide Carbonate Complexes and Implications for Actinide Environmental Chemistry," Chemical Reviews, February (1995).Google Scholar
12 Newton, T.W. and Sullivan, J.C., in Handbook on the Physics and Chemistry of the Actinides, edited by Freeman, A.J. and Keller, C. (Elsevier Science Publishers, 1985).Google Scholar
13 Harvie, C.E., Greenberg, J.P., and Weare, J.H., Geochim. Cosmochim. Acta 51 (5), 10451057 (1987).Google Scholar
14 Ueno, K. and Saito, A., Radiochem. Radioanal. Let. 22 (2), 127133 (1975).Google Scholar
15 Neck, V., Kim, J.I., and Kanellakopulos, B.. 1994. Thermodynamisches Verhalten von Neptunium(V) in Konzentrierten NaCI- und NaC104 Losungen. KfK 5301. Institut fur Nukleare Entsorgungstechnik, Institut fur HeiBe Chemie, Kemforschungszentrum Karlsruhe.Google Scholar
16 Vasudeva Rao, P.R., Gudi, N.M., Bagawde, S.V., and Patil, S.K., F. Inorg. Nuc. Chem. 41,235239 (1979).Google Scholar
17 Lierse, Ch., Treiber, W., and Kim, J.I., Radiochim. Acta 38,2728 (1985).Google Scholar
18 Neck, V., Kim, J.I., and Kanellakopolos, B., Radiochim. Acta 56, 2530 (1992).Google Scholar
19 Inoue, Y. and Tochiyama, O., Bull. Chem. Soc. Jpn. 58, 588591 (1985).Google Scholar
20 Kim, J.I., Klenze, R., Neck, V., Sekine, T., and Kanellakopulos, B.. 1991. Hydrolyse, Carbonat- und Humat-Komplexierung von Np(V). RCM 01091. Institut fur Radiochemie der Technischen Universitat Munchen.Google Scholar
21 Maya, L., Inorg. Chem. 22 (14), 20932095 (1983).Google Scholar
22 Ref. [3], pp. 101–102, 107–108.Google Scholar
23 Nitsche, H., Roberts, K., Xi, R., Prussin, Y., Becraft, K., Al Mahamid Al Rifai, I., Silber, H.B., Carpenter, S.A., Gatti, R.C., and Novak, C.F., Radiochim. Acta, proceedings from Migration '93 (1994).Google Scholar
24 Cox, J.D., Wagman, D.D., and Medvedev, V.A., CODATA Key Values for Thermodynamics (Hemisphere Publishing Corporation, New York), p. 268.Google Scholar
25 Fuger, J. and Oetting, F.L., The Chemical Thermodynamics of Actinide Elements and Compounds: Part 2: The Actinide Aqueous Ions, (International Atomic Energy Agency, Vienna, Austria, 1976).Google Scholar
26 Ref. [3], pp. 100,116.Google Scholar