Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T22:38:50.536Z Has data issue: false hasContentIssue false

Thermodynamics of Nano-Grain Boundaries

Published online by Cambridge University Press:  28 February 2011

Hans J. Fecht*
Affiliation:
Universität Augsburg, Institut für Physik, D-8900 Augsburg, F.R.G.
Get access

Abstract

A universal, accurate and simple method is developed to describe the thermodynamic properties of disordered grain boundaries in nanocrystalline metals. Based on a free volume approach at negative pressure of the universal equation of state, the maximum free volume, bulk modulus, specific heat at constant pressure, thermal expansion coefficient, excess enthalpy, excess entropy and free energy of grain boundaries are derived from well-known thermodynamic relationships. Describing nanocrystalline metals as a bimodal material with a grain boundary component and a crystalline component, their thermodynamic properties can then be estimated by appropriate scaling of the boundary-to-volume ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Birringer, R., Gleiter, H., Klein, H.P. and Marquardt, P., Phys. Lett. 102A. 365 (1984)Google Scholar
2. Zhu, X., Birringer, R., Herr, U. and Gleiter, H., Phys. Rev. B 25, 9085 (1987)Google Scholar
3. Fecht, H.J., Hellstern, E., Fu, Z. and Johnson, W.L., Metall. Trans. 21A. 2333 (1990)Google Scholar
4. Fecht, H.J., Hellstern, E., Fu, Z. and Johnson, W.L., Adv. Powd. Met. 2, 111 (1989)Google Scholar
5. Gleiter, H. in Acta Metallurgica Conference on Materials with Ultrafine Microstructures, edited by Kear, B.H. and Siegel, R.W., Atlantic City, Oct. 1990 Google Scholar
6. Rupp, J. and Birringer, R., Phys. Rev. B 26, 7888 (1988)Google Scholar
7. Korn, D., Morsch, A., Birringer, R., Arnold, W. and Gleiter, H., J. de Phys. 49 –C5, 769 (1988)Google Scholar
8. Schumacher, S., Birringer, R., Strauβ, R., and Gleiter, H., Acta Metall. 37, 2485 (1989)CrossRefGoogle Scholar
9. Klam, H.J., Hahn, H., and Gleiter, H., Acta Metall. 22, 2101 (1987)CrossRefGoogle Scholar
10. Seeger, A. and Schottky, G., Acta Metall. 7, 495 (1959)CrossRefGoogle Scholar
11. Merkle, K.L. and Wolf, D., Mat. Res. Soc. Bull. 15, 42 (1990)CrossRefGoogle Scholar
12. Fecht, H.J., Acta Metall. 38, 1927 (1990)CrossRefGoogle Scholar
13. Fecht, H.J., Phys. Rev. Lett, 65, 610 (1990)CrossRefGoogle Scholar
14. Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J., Phys. Rev. B 29 2963 (1984)CrossRefGoogle Scholar
15. Vinet, P., Smith, J.R., Ferrante, J., and Rose, J.H., Phys. Rev. B 35, 1945 (1987)Google Scholar
16. Barron, T.H.K., Collins, J.G. and White, G.K., Adv. Phys. 29, 609 (1980)CrossRefGoogle Scholar
17. Sutton, A.P., Phil. Mag. A 60 147 (1989)Google Scholar
18. Ashcroft, N.W. and Mermin, N.D., Solid State Physics (Saunders College, Philadelphia 1976)Google Scholar
19. Landau, L.D. and Lifshitz, E.M., Statistical Physics (3rd Ed. Pergamon Press 1985) p. 53 Google Scholar
20. Gscheidner, K.A. Jr. in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic Press, New York 4, 1957) p. 275 Google Scholar
21. Haubold, T., Birringer, R., Lengeler, B., and Gleiter, H., J. Less-Comm. Met. 145. 557 (1988)Google Scholar
22. Fecht, H.J. and Johnson, W.L., Nature 334, 51 (1988)Google Scholar
23. Wallner, G., Jorra, E., Franz, H., Peisl, J., Birringer, R., Gleiter, H., Haubold, T. and Petry, W., Mat. Res. Soc. Symp. 132, 149 (1989)Google Scholar