Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T02:49:04.468Z Has data issue: false hasContentIssue false

Thick Films for Dielectric Isolation by Lateral Epitaxy from the Melt

Published online by Cambridge University Press:  22 February 2011

G. K. Celler
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
L. E. Trimble
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Dielectric Isolation (DI) technology has been available for almost twenty years. It was first developed for low capacitance, high speed circuits, and was later adapted to radiation hardened devices and for high voltage isolation. We describe a new method of forming DI structures that simplifies wafer fabrication, reduces the density of process induced defects, and may lead to a more flexible device design. Our process is based on recrystallization from the melt of thick Si films deposited over oxidized Si wafers, with a regular array of seeding windows opened in the isolation oxide. The recrystallized films are free of grain boundaries and subboundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Single-Crystal Silicon on Non-Single-Crystal Insulators, edited by Cullen, G. W., J. Cryst Growth 63, No. 3, pp. 429590 (1983).Google Scholar
[2]Bean, K. E. and Runyan, W. R., J. Electrochem. Soc. 124, 5C (1977).Google Scholar
[3]Celler, G. K., Robinson, McD., and Lischner, D. J., Appl. Phys. Lett. 42, 99(1983).Google Scholar
[4]Celler, G. K., Robinson, McD., Lischner, D. J., and Sheng, T. T., Proc. Mat. Res. Soc. 13, 575 (1983).Google Scholar
[5]Robinson, McD., Lischner, D. J. and Celler, G. K., J. Cryst. Growth 63, 484 (1983).Google Scholar
[6]Suzuki, T., Mimura, A., and Ogawa, T., J. Electrochem. Soc. 124, 1776 (1977).Google Scholar
[7]Lischner, D. J. and Celler, G. K., Proc. Mat. Res. Soc. 4, 759 (1983).Google Scholar
[8]Robinson, McD., in Impurity Doping Processes in Silicon, Wang, F. F., ed. (North Holland, New York 1981) pp. 259314.Google Scholar
[9]Schimmel, D. G., J. Electrochem Soc. 126, 479 (1979).Google Scholar
[10]Celler, G. K., J. Cryst Growth 63, 429 (1983).Google Scholar
[ll]Fan, J. C. C., Tsaur, B.-Y., and Geis, M. W., J. Cryst. Growth 63, 453 (1983).Google Scholar
[12]Tamura, M., Tamura, H., Miyao, M., and Tokuyama, T., Jap. J. AppI. Phys. 20, Suppl. 20–1, pp. 4348 (1981).Google Scholar
[13]Hawkins, W. G. and Biegelsen, D. K., Appl. Phys. Lett. 42, 358 (1983).Google Scholar
[14]Celler, G. K., Robinson, McD., Trimble, L. E., and Lischner, D. J., Appl. Phys. Lett. 43, 868 (1983).Google Scholar
[15]Wilson, L. O., unpublished.Google Scholar
[16]Bezjian, K. A., Smith, H. I., Carter, J. M., and Geis, M. W., J. Electrochem. Soc. 129, 1848 (1982).Google Scholar
[17]Surek, T. and Chalmers, B., J. Cryst. Growth 29, 1 (1975).Google Scholar
[18]Yablonovitch, E., unpublished.Google Scholar
[19]Atwater, H. A., Smith, H. I., Thompson, C. V., and Geis, M. W. Materials Letters, to be published.Google Scholar
[20]Pfeiffer, L., Celler, G. K., Kovacs, T. and Robinson, McD., Appl. Phys. Lett. 43, 1048 (1983).Google Scholar