Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T13:07:08.251Z Has data issue: false hasContentIssue false

Thin p-type Microcrystalline Silicon Film on Various Substrates

Published online by Cambridge University Press:  10 February 2011

J. K. Rath
Affiliation:
Dept. of Atomic and Interface physics, Debye Institute, Utrecht University, P.O.Box 80000, NL-3508 TA Utrecht, the Netherlands
J. Wallinga
Affiliation:
Dept. of Atomic and Interface physics, Debye Institute, Utrecht University, P.O.Box 80000, NL-3508 TA Utrecht, the Netherlands
R. E. I. Schropp
Affiliation:
Dept. of Atomic and Interface physics, Debye Institute, Utrecht University, P.O.Box 80000, NL-3508 TA Utrecht, the Netherlands
Get access

Abstract

Thin(<20nm) p-type microcrystalline silicon f'dms have been deposited by PECVD in an unusual parameter regime, specifically optimized for extremely thin films. High conductivity (>10.2 Scm−1) and low activation energy(<0.08eV) of thin films have been achieved on various metal oxide substrates i.e., Coming 7059 glass, SnO2:F, TiO2 and Ta2O5. Crystallinity was confirmed by Raman spectroscopy and UV reflectance. Deposition of p-μc-Si:H is possible on void rich films (a-SiC:H and low temperature deposited a-Si:H) but not on device quality a-Si:H. Cells made in a superstrate structure using p-μc-Si:H as the window layer directly on top of SnO2:F coated glass yielded 9.63% efficiency, with an improvement in the blue spectral response compared to the cell made with a- SiC:H(B) as window layer. Tandem cells (a-Si:H/a-Si:H) incorporating p-μc-Si:H along with n-μc- Si:H in the tunnel junction yielded 8.8% efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cabarocas, P Roca I, Layadi, N., Heitz, T., Drevillon, B. and Solomon, I, Appl. Phys Lett., 66, 3609 (1995).Google Scholar
2. Rath, J.K., von der Linden, M.B., Ullersma, E.H.C. and Schropp, R.E.I., Proc. 13th Europ. PVSEC, 1712 (1995).Google Scholar
3. Tsu, R., Gonzalez-Hemandez, J., Chao, S.S., Lee, S.C. and Tanaka, K., Appl. Phys. Lett., 40, 534 (1982).Google Scholar
4. Jayatissa, A.H., Nakanishi, Y. and Hatanaka, Y., Jpn. J. App. Phys., 32, 3729 (1993).Google Scholar
5. van Cleef, M.W.M., Rath, J.K., van der Werf, C.H.M., Rubinelli, F.A. and Schropp, R.E.I., to be presented at 25th IEEE Photovoltaic Specialist Conference, Washington, DC, May 1317 (1996).Google Scholar
6. Parsons, Gregory N., Boland, John J. and Tsang, James C., Jpn. J. Appl. Phys., 31, 1943 (1992).Google Scholar
7. Boland, J.J., Science, 255, 186 (1992).Google Scholar
8. Rath, J.K., van der Werf, C.H.M. and Schropp, R.E.I., to be presented at 25th IEEE Photovoltaic Specialist Conference, Washington DC, May 1317 (1996).Google Scholar