Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-07T04:41:57.105Z Has data issue: false hasContentIssue false

Tight-Binding Formalism for Ionic Fullerides and its Application to Alkali-C60 Polymers

Published online by Cambridge University Press:  10 February 2011

Susumu Saito
Affiliation:
Department of Physics, Tokyo Institute of Technology 2–12–1 Oh-okayama, Meguro-ku, Tokyo 152, JAPAN
Steven G. Louie
Affiliation:
Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley, California 94720
Marvin L. Cohen
Affiliation:
Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley, California 94720
Get access

Abstract

We present a tight-binding formalism which can properly treat various ionic füllendes. In the Hamiltonian we include the intrafullerene Coulomb repulsion energy and the Madelung energy of the ionic lattice, both of which depend on the possible charge disproportion between fullerenes. This Hamiltonian requires a self-consistent treatment, but it is applicable to much larger systems than first-principles methods. Using this formalism we have studied the electronic structure of the one-dimensional A1C60 polymer. The present generalization of the tight-binding model is found to be important for ionic füllendes and a moderate-amplitude charge-density-wave state is found to be a possible stable state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saito, S., Sawada, S., and Hamada, N., Phys. Rev. B 45, 13845 (1992).Google Scholar
2. Xu, C. H., Wang, C. Z., Chan, C. T., and Ho, K. M., J. Phys. Condensed Matter 4, 6047 (1992).Google Scholar
3. Zhang, B. L., Wang, C. Z., and Ho, K. M., J. Chem. Phys. 96, 7183 (1992).Google Scholar
4. Hebard, A. F., Rosseinsky, M. J., Haddon, R. C., Murphy, D. W., Glarum, S. H., Palstra, T. T. M., Ramirez, A. P., and Kortan, A. R., Nature 350, 600 (1991);Google Scholar
Tanigaki, K., Ebbesen, T. W., Saito, S., Mizuki, J., Tsai, J. S., Kubo, Y., and Kuroshima, S., Nature 352, 222 (1991).Google Scholar
5. Stephens, P. W., Bortel, G., Faigel, G., Tegze, M., Janossy, A., Pekker, S., Oszlanyl, G., and Forro, L., Nature 370, 636 (1994).Google Scholar
See, for example, Bommeli, F., Degiorgi, L., Wachter, P., Legeza, O., Janossy, A., Oszlanyi, G., Chauvet, O., and Forro, L., Phys. Rev. B 51, 14794 (1995);Google Scholar
Hone, J., Fuhrer, M. S., Khazeni, K., and Zettl, A., Phys. Rev. B 52, R8700 (1995).Google Scholar
6. Saito, S., in Clusters and Cluster-Assembled Materials (edited by Averback, R. S., Nelson, D. L., and Bernholc, J.), Proc. 1990 Mat. Res. Soc. Fall Meeting, Proc. Vol.206 (MRS 1991), p. 115 Google Scholar