Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-22T05:37:53.159Z Has data issue: false hasContentIssue false

Time-Resolved Photoluminescence in a-Si1-xCx:H

Published online by Cambridge University Press:  10 February 2011

Leandro R. Tessler
Affiliation:
Instituto de Física “Gleb Wataghin”, UNICAMP, C. P. 6165, 13083-970 Campinas, SP, Brazil, tessler@ifi.unicamp.br
Lucicleide R. Cirino
Affiliation:
Instituto de Física “Gleb Wataghin”, UNICAMP, C. P. 6165, 13083-970 Campinas, SP, Brazil, tessler@ifi.unicamp.br
Get access

Abstract

The dependence of the photoluminescence (PL) decay on temperature and composition of a series of amorphous silicon-carbon alloys (a-Si1-xCx:H) with 0 <x <0.4 was studied. The samples were prepared by “low power” PECVD from SiH4/CH4 gas mixtures. The decay curves are non-exponential and can be described as lifetime distributions (LTD). For pure a-Si:H at 17 K the peak of the LTD is of the order of 5×10-4 sec. It shifts to shorter lifetimes as x or the temperature increases. Samples with x > 0.3 present in addition a faster peak with maximum at 10-8 sec. The fast peak is almost temperature independent. The slow component shifts to shorter lifetimes as the temperature increases, and vanishes at room temperature. The presence of the fast peak is interpreted as due to a change in the radiative recombination mechanism. We associate this peak to the recombination of trapped “excitons”.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Searle, T. M. and Jackson, W. A., Phil. Mag. B 60,237 (1989).Google Scholar
2. Tessler, L. R. and Solomon, I., Phys. Rev. B 52, 10962 (1995).Google Scholar
3. Boulitrop, F. and Dunstan, D. J., Phys. Rev. B 28, 5923 (1983); D. J. Dunstan and F. Boulitrop, Phys. Rev. B, 30, 5945 (1984).Google Scholar
4. Street, R. A., Phil. Mag. B 37, 35 (1978).Google Scholar
5. Solomon, I., Schmidt, M. P. and Tran-Quoc, H., Phys. Rev. B 38, 9895 (1988).Google Scholar
6. Bullot, J. and Schmidt, M. P., Phys. Stat. Sol. (b) 143, 345 (1989).Google Scholar
7. Solomon, I. and Tessler, L. R. in Amorphous Silicon Technology – 1994, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M. and Matsuda, A. (Mat. Res. Soc. Proc. 336, Pittsburgh, 1986) pp. 505510.Google Scholar
8. Jackson, W. B. and Nemanich, R. J., J. Non. Cryst. Sol. 59&60, 353 (1983).Google Scholar
9. Tessler, L. R. and Solomon, I. in Amorphous Silicon Technology – 1994, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M. and Matsuda, A. (Materials Research Society Proceedings 336, Pittsburgh, 1986) pp. 613618.Google Scholar
10. Tsang, C. and Street, R. A., Phys. Rev. B 19, 3027 (1979).Google Scholar
11. Siebert, W., Carius, R., Fuhs, W. and Jahn, K., Phys.Stat. Sol. (b) 140, 311 (1987).Google Scholar
12 Street, R. A., Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge, 1991), p. 285.Google Scholar
13. Chauvet, O., Zuppiroli, L., Ardonceau, J., Solomon, I., Wang, Y. C. and Davis, R. F., Mater. Sci. Forum 83–87, 1201 (1992).Google Scholar
14. Kivelson, S. and Gelatt, C. D. Jr., Phys. Rev. B 26, 4646 (1982).Google Scholar
15. Vasil'ev, V. A., Volkov, A. S., Musabekov, E., Terukov, E. I., Chelnokov, V. E., Chernyshov, S. V. and Shernyakov, Yu. M., Sov. Phys. Semicond. 24, 445 (1990) [Fiz. Tekh. Poluprovodn. 24, 710 (1990)]; S. V. Chemyshov, E. I. Terukov, V. A. Vassilyev and A. S. Volkov, J. Non-Cryst. Sol. 134, 218 (1991).Google Scholar