Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T04:07:54.931Z Has data issue: false hasContentIssue false

Titanium Oxynitride Thin Film Deposition by Pulsed Laser Ablation of Titanium Targets in Nitrogen

Published online by Cambridge University Press:  01 January 1992

V. Craciun
Affiliation:
Electronic and Electrical Engineering, University College London, London WClE 7JE, UK
D. Craciun
Affiliation:
Electronic and Electrical Engineering, University College London, London WClE 7JE, UK
S. Amirhaghi
Affiliation:
Electronic and Electrical Engineering, University College London, London WClE 7JE, UK
M. Vickers
Affiliation:
Department of Crystallography, Birbek College, London WClE 7HX, UK
S. Tarling
Affiliation:
Department of Crystallography, Birbek College, London WClE 7HX, UK
P. Barnes
Affiliation:
Department of Crystallography, Birbek College, London WClE 7HX, UK
I. W. Boyd
Affiliation:
Electronic and Electrical Engineering, University College London, London WClE 7JE, UK
Get access

Abstract

Reactive pulsed laser deposition of titanium targets in a nitrogen atmosphere has been used to deposit thin titanium oxynitride films on Si substrates. The gold coloured layers exhibited a smooth, featureless surface and good chemical resistance in HF-HNO3 mixtures. The films had a high oxygen content which was responsible for relatively high electrical resistivity, measured to be 200–600 μΩ cm. This new method can easily be applied to the growth of other important nitrides such as ZrN, WN, HfN or the deposition of multilayer structures such as TiN/Ti on a variety of substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wittmer, M., J. Vac. Sci. Technol. A3, 1797 (1985).Google Scholar
2. Vasile, M. J., Emerson, A. B. and Baiocchi, F. A., J. Vac. Sci. Technol. A8, 99 (1991).Google Scholar
3. Savvides, N. and Window, B., J. Appl. Phys. 64, 225 (1988).Google Scholar
4. Bonelli, M., Guzman, L. A., Miotello, A., Calliari, L., Elena, M. and Ossi, P. M., Vacuum 43, 459 (1992).Google Scholar
5. Delfino, M., Fairand, J. A., Hodul, D., J. Appl.Phys. 71, 6079 (1992).Google Scholar
6. Fang, Y. K., Chen, K. H., Hwang, S. B., Wu, S. J., Liu, C. R., Lin, W. T. and Chen, J. R., Thin Solid Films 208, 228 (1992).Google Scholar
7. J, M.. Buiting and Reader, A. H., in Chemical Vaoor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, M. (Mater. Res. Soc. Proc. 168, Pittsburgh, PA, 1990) pp 199–204.Google Scholar
8. Buiting, M.J. and Otterloo, A. F., J. Electrochem. Soc. 139, 2580 (1992).Google Scholar
9. Craciun, V., Mihailescu, I. N., Ursu, I., Craciunoiu, F., Corici, A., Leggieri, G., Luches, A., Nassisi, V. and Martino, M., Appl. Phys. Lett. 52, 1225 (1988).Google Scholar
10. Craciun, V., Mihailescu, I. N., Ursu, I., Leggieri, G., Luches, A. and Martino, M., Appl. Surf. Sci. 43, 403 (1989).Google Scholar
11. D'Anna, E., De Giorgi, M. L., Leggieri, G., Luches, A., Perrone, A., Mihailescu, I. N., Mengucci, P. and Drigo, A. V., Thin Solid Films 213, 197 (1992).Google Scholar
12. Craciun, V. and Andrei, A. (unpublished)Google Scholar
13. Biunno, N., Narayan, J., Hofmeister, S. K., Srivatsa, A. R. and Singh, R. K., Appl. Phys. Lett. 54, 1519 (1989).Google Scholar
14. Auciello, O., Barnes, T., Chevacharoenkul, S., Schreiner, A. F. and McGuire, G. E., Thin Solid Films 181, 65 (1989).Google Scholar
15. Kools, J. C. S., Niellesen, C. J. C. M., Brongersma, S. H., van de Riet, E. and Dieleman, J., J. Vac. Sci. Technol. A10, 1809 (1992).Google Scholar
16. Narayan, J., Tiwari, P., Chen, X., Singh, J., Chowdhuri, R. and Zheleva, T., Appl. Phys. Lett. 61, 1290 (1992).Google Scholar
17. Choi, C.-H., Hultman, L., Chiou, W.-A. and Barnett, S. A., J. Vac. Sci. Technol. B9, 221 (1991).Google Scholar
18. Manory, R.R. and Kimmel, G., Thin Solid Films 150, 277 (1987).Google Scholar
19. Kreutz, E. W., Krosche, M., Sung, H., Voss, A. and Wissenbach, K., Appl. Surf. Sci. 54, 69 (1992).Google Scholar
20. Ting, C. Y., J. Vac. Sci. Technol. 21, 14 (1982).Google Scholar
21. Wirtz, Ch., Blatter, A. and Hauert, R., Thin Solid Films 214, 63 (1992).Google Scholar
22. Craciun, D. and Craciun, V., Appl. Surf. Sci. 54, 75 (1992).Google Scholar
23. Nishitani, S. R., Yoshimura, S., Kawata, H. and Yamaguchi, M., J. Mater. Res. 7, 725 (1992).Google Scholar
24. Doolittle, L. R., Nucl. Instr. Meth. B15, 227 (1986).Google Scholar
25. Maheo, D. and Poitevin, J. M., Thin Solid Films 215, 8 (1992).Google Scholar
26. Jin, P. and Maruno, S., Jap. I. Appl. Phys. 31, 1446 (1992).Google Scholar
27. Tyrrel, G., York, T. and Boyd, I. W., (unpublished).Google Scholar