Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-17T14:32:09.065Z Has data issue: false hasContentIssue false

Topological Disorder and Conductance Fluctuations in Granular Thin Films

Published online by Cambridge University Press:  10 February 2011

Kristin M. Abkemeier
Affiliation:
The James Franck Institute and Department of Physics The University of Chicago Chicago, IL 60637
David G. Grier
Affiliation:
The James Franck Institute and Department of Physics The University of Chicago Chicago, IL 60637
Get access

Abstract

Topological disorder places constraints on the local flow of currents in granular thin films of metals and semiconductors. These constraints in turn influence measurable transport properties such as conductance and conductance fluctuations for these films. We quantify disorder in the disposition of grains within real and simulated thin films by applying methods originally developed studying foam evolution. For simulated Voronoi resistor networks the overall conductance of a film with a given grain density achieves a minimum value for an intermediate degree of disorder. Films of equal conductances on either side of this minimum can have strikingly different current distributions. Short range inhomogeneities in the size and placement of grains lead to large scale conductivity inhomogeneities in disordered films. This renders the disordered films more susceptible to 1/f noise for systems with nonlinear intergrain coupling due to factors such as hydrogen diffusion. We discuss the results of simulations of such systems in the context of transport and scanning probe microscopy measurements on a-Si:H thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dutta, P. and Horn, P. M., Rev. Mod. Phys. 53, 497 (1981).Google Scholar
[2] Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988).Google Scholar
[3] Garfunkel, G. A., Alers, G. B., and Weissman, M. B., Phys. Rev. B 41, 4901, (1990).Google Scholar
[4] Coppinger, F., Genoe, J.,Maude, D. K., Gennser, U., Portal, J. C., Singer, K. E., Rutter, P., Taskin, T., Peaker, A. R., and Wright, A. C., Phys. Rev. Lett. 75, 3513 (1995).Google Scholar
[5] Parman, C. E., Israeloff, N. E., and Kakalios, J., Phys. Rev. B 44, 8391 (1995).Google Scholar
[6] Parman, C. E., Israeloff, N. E., and Kakalios, J., Phys. Rev. B 47, 12578 (1993).Google Scholar
[7] Lust, L. M. and Kakalios, J., Phys. Rev. Lett. 75, 2192 (1995).Google Scholar
[8] Choi, W. K., Owen, A. E., LeComber, P. G., and Rose, M. J., J. Appl. Phys. 68, 120 (1990).Google Scholar
[9] Teuschler, T., Hundhausen, M., Ley, L., and Arce, R., Phys. Rev. B 47, 12687 (1993).Google Scholar
[10] Lust, L. M. and Kakalios, J., Phys. Rev. E 50, 3431 (1994), and references therein.Google Scholar
[11] Priolo, A., Jaeger, H. M., Dammers, A. J., and Radelaar, S., Phys. Rev. B 46, 14889 (1992).Google Scholar
[12] Ralls, K. S., Skocpol, W. J., Jackel, L. D., Howard, R. E., Fetter, L. A., Epworth, R. W., and Tennant, D. M., Phys. Rev. Lett. 52, 228 (1984).Google Scholar
[13] Scofield, J. H. and Webb, W. W., Phys. Rev. Lett. 54, 353 (1985).Google Scholar
[14] Zimmerman, N. M. and Webb, W. W., Phys. Rev. Lett. 61, 889 (1988).Google Scholar
[15] Zimmerman, N. M. and Webb, W. W., Phys. Rev. Lett. 65, 1040 (1990).Google Scholar
[16] Street, R. A., Kakalios, J., Tsai, C. C., and Hayes, T. M., Phys. Rev. B 35, 1316 (1987).Google Scholar
[17] Cair, G. Le and Ho, J. S., J. Phys. A: Math. Gen. 23, 3279 (1990).Google Scholar