Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-15T08:57:57.605Z Has data issue: false hasContentIssue false

Transformation of Gold in N-Type Silicon from a New Deep Level to the Gold Acceptor Level

Published online by Cambridge University Press:  03 September 2012

Einar Ö. SveinbjöRnsson
Affiliation:
Department of Solid State Electronics, Chalmers University of Technology, S-41296 Göteborg, Sweden.
Olof Engström
Affiliation:
Department of Solid State Electronics, Chalmers University of Technology, S-41296 Göteborg, Sweden.
Get access

Abstract

Using deep level transient spectroscopy (DLTS) on gold-doped n-type Czochralski (CZ) and float zone (FZ) silicon we observe a new gold-related acceptor level (G) with an activation energy σn= 0.19 eV and an electron capture cross section On = 1–10-17 cm2. The center anneals out at a temperature of 250°C, simultaneously as the gold acceptor concentration increases. Annealing at temperatures below 250°C does not reverse this process. However, etching a few microns off the sample surface using HF:HNO3 based etch reforms the G center and the gold acceptor concentration decreases accordingly. From DLTS depth-profiling we determine that the new center is only found at depths less than 5 μm, and in the same region we observe neutralization of phosphorus dopants and a reduction in the gold acceptor concentration.

We propose that in-diffusion of hydrogen during the etching process is responsible for the three observed transitions, i.e. neutralization of both phosphorus donors and gold acceptors and formation of the G center. We suggest that there are (at least) two possible Au-H complex centers, one which is electrically inactive and another which gives rise to an acceptor level (ΔE = 0.19 eV) in the bandgap of n-type silicon. The electrically active center anneals out at 250°C while the electrically inactive one is more stable and has been observed earlier in remote plasma hydrogenation experiments performed at 150–350°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lang, D. V., Grimmeiss, H. G., Meijer, E., and Jaros, M., Phys. Rev. B22, 3917 (1980).Google Scholar
2. Ledebo, L. -Å. and Wang, Zhan-Guo, Appl. Phys. Lett. 42, 680 (1983).Google Scholar
3. Petersen, J. W. and Nielsen, J., Appl. Phys. Lett. 56, 1122 (1990).Google Scholar
4. Weber, E. R. and Gilles, D., in Semiconductor Silicon 1990, edited by Huff, H. R., Barraclough, K. G., and Chikawa, J., (The Electrochemical Society, Pennington, 1990), p. 585.Google Scholar
5. Lemke, H., Phys. Stat. Sol. (a) 75, 473 (1983).CrossRefGoogle Scholar
6. Brotherton, S. D., Bradley, P., and Gill, A., J. Appl. Phys. 57, 1783 (1985).Google Scholar
7. Pearton, S. J. and Tavendale, A. J., Phys. Rev. B26, 7105 (1982).Google Scholar
8. Pearton, S. J., Hansen, W. L., Haller, E.E., and Kahn, J.M., J. Appl. Phys. 55, 1221 (1984).CrossRefGoogle Scholar
9. Kern, W. and Puotinen, D. A., RCA Review, 187 (1970).Google Scholar
10. Andersson, G. I. and Engström, O., J. Appl. Phys. 67, 3500 (1990).Google Scholar
11. Grimmeiss, H. G., Janzen, E., Skarstam, B., and Lodding, A., J. Appl. Phys. 51, 6238 (1981).CrossRefGoogle Scholar
12. Stievenard, D., and Vuillaume, D., J. Appl. Phys. 60, 973 (1986).Google Scholar
13. Johnson, N. M., Doland, C., Ponce, F., Walker, J., and Anderson, G., Physica B170, 3 (1991).CrossRefGoogle Scholar
14. Tavendale, A. J., Williams, A. A., and Pearton, S. J., Mat. Res. Soc. Symp. Proc. Vol. 104, 285 (1988).Google Scholar
15. Seager, C. H., Anderson, R. A., and Panitz, J. K. G., J. Mater. Res. 2, 96 (1987).CrossRefGoogle Scholar
16. Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A 43, 153 (1987).Google Scholar
17. Zhu, J., Johnson, N. M., and Herring, C., Phys. Rev. B 41, 12354 (1990).Google Scholar
18. Endrös, A. L., Krühler, W., and Grabmaier, J., Physica B 170, 365 (1991).Google Scholar
19. Tavendale, A. J., Pearton, S. J., and Williams, A. A., Appl. Phys. Lett. 56, 949 (1990).Google Scholar
20. Lecrosnier, D., Paugam, J., Richou, F., Pelous, G., and Beniere, F., J. Appl. Phys. 51, 1036 (1980).CrossRefGoogle Scholar
21. Mesli, A., Courcelle, E., Zundel, T., and Siffert, P., Phys. Rev. B36, 8049 (1987).CrossRefGoogle Scholar
22. Hartiü, B., Muller, J. C, and Siffert, P., Appl. Phys. Lett. 59, 425 (1991).Google Scholar
23. Hartiti, B., Muller, J. C, and Siffert, P., IEEE Trans. Electr. Dev. Vol 39, 96 (1992).Google Scholar
24. Lemke, H., Phys. Stat. Sol. (a) 92, K139 (1985).Google Scholar
25. Morooka, M., Tomokage, H., and Yoshida, M., Japanese J. Appl. Phys. 27, 1778 (1988).CrossRefGoogle Scholar
26. Brotherton, S. D. and Bradley, P., J. Appl. Phys. 53, 5720 (1982).CrossRefGoogle Scholar
27. Kimeriing, L. C., Inst. Phys. Conf. Ser. 31, 221 (1977).Google Scholar