Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-20T07:19:30.306Z Has data issue: false hasContentIssue false

Transport Mechanisms in Focused Ion Beam Assisted Ohmic Contacts to p-Type 6H-SiC

Published online by Cambridge University Press:  11 February 2011

Agis A. Iliadis*
Affiliation:
Electrical and Computer Engineering Department, University of Maryland, College Park, MD 20742
Get access

Abstract

The current transport mechanism in non-annealed Ohmic contact metallizations on p-type 6H-SiC formed by using focused ion beam (FIB) surface-modification and direct-write metal deposition is reported, and the properties of such focused ion beam assisted non-annealed contacts are discussed. The process uses a Ga focused ion beam to modify the surface of the semiconductor with different doses, and then introduces an organometallic compound in the Ga ion beam, to effect the direct-write deposition of a metal on the modified surface. Contact resistance measurements by the transmission line method produced values in the low 10-4 Ω cm2 range for surface-modified and direct-write Pt and W non-annealed contacts, and mid 10-5 Ω cm2 range for surface-modified and pulse laser deposited TiN contacts. The current transport mechanism of these contacts was examined and found to proceed mainly by tunneling through the metal-modified-semiconductor interface layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nennewitz, O., Spiess, L. and Breternitz, V., Appl. Surf. Sci. 91, 347 (1995)Google Scholar
2. Crofton, J., Barnes, P. A., Williams, J. R. and Edmond, J. A., Appl. Phys. Lett. 62, 384 (1993)Google Scholar
3. Oder, T. N., Williams, J. R., Mohney, S. E., and Crofton, J., J. Elect. Mat. 27, 12 (1998)Google Scholar
4. Lundberg, N., and Ostling, M., Solid State Electronics 39, 1559 (1996)Google Scholar
5. Zhao, J. H., Tone, K., Weiner, S. R., Caleca, M., Du, H., and Withrow, S. P., IEEE Elect. Dev. Lett. 18, 375 (1997)Google Scholar
6. Goesmann, F., Schmid-Fetzer, R., Mat. Sci. and Eng. B34, 224 (1995)Google Scholar
7. Lee, S. K., Zetterling, C. M., Danielsson, E., Ostling, M., Palmquist, J. P., Holgberg, H., and Jansson, U., Appl. Phys. Let. 77, 1478 (2000)Google Scholar
8. Fursin, L. G., Zhao, J. H., and Weiner, M., Electron. Lett. 37, 1092 (2001)Google Scholar
9. Iliadis, A.A., Andronescu, S. N., Yang, W., Vispute, R. D., Stanishevsky, A., Orloff, J. H., Sharma, R. P., Venkatesan, T., Wood, M. C., Jones, K. A., J. Elec. Mat. 26, 136 (1999)Google Scholar
10. Iliadis, A. A., Andronescu, S. N., Edinger, K., Orloff, J. H., Vispute, R. D., Talyansky, V., Sharma, R. P., Venkatesan, T., Wood, M. C., and Jones, K. A., Appl. Phys. Lett., 73, 3545 (1998)Google Scholar
11. Bplauner, P., Butt, Y., Ro, J., Thompson, C., and Melngailis, J., J. Vac. Sci. Tech. B7, 1816 (1989)Google Scholar
12. Sze, S. M., Physics of Semiconductor Devices, Wiley-Interscience, New York, 2nd Edition, 1981, p. 304 Google Scholar
13. Henry, A., Hallin, C., Ivanov, I. G., Bergman, J. P., Kordina, O., and Janzen, E., SiC and Related Materials 1995 Conference, Inst. Phys. Series, 142, 381 (1995)Google Scholar
14. Skorupa, W., Heera, V., Pacaud, Y., and Weishart, H., Nuclear Instruments and Methods in Physics Research B, 120, 114 (1996)Google Scholar