Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-13T16:53:35.246Z Has data issue: false hasContentIssue false

Tunable Magnetic Properties in Metal Ceramic Composite Thin Films

Published online by Cambridge University Press:  21 March 2011

D. Kumar
Affiliation:
Center for Advanced Materials and Smart Structures, Department of Mechanical Engineering, North Carolina A & T State University, Greensboro, NC 27411.
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695.
A. K. Sharma
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695.
A. Kvit
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695.
C. Jin
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695.
J. Sankar
Affiliation:
Center for Advanced Materials and Smart Structures, Department of Mechanical Engineering, North Carolina A & T State University, Greensboro, NC 27411.
Get access

Abstract

We have developed a novel thin film processing method based upon pulsed laser deposition to process nanocrystalline magnetic materials with accurate size and interface control. Using this method, single domain nanocrystalline Fe and Ni particles in 5-10 nm size range embedded in amorphous as well as crystalline alumina have been produced. Magnetization measurements of these layered thin films as function of field and temperature were carried out using a superconducting quantum interference device magnetometer. Hysteresis below blocking temperature have been found to be consistent with the Stoner-Wohlfarth type behavior. The size of Fe and Ni nanodots measured using transmission electron microscopy and calculated using magnetic data are in excellent agreement with each other.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, L., Sui, M.L., and Lu, L., Science 287, 1463 (2000).Google Scholar
2. Schultz, L., Schnitzke, K., and Wecker, J., Appl. Phys. Lett. 56, 868 (1990).Google Scholar
3. Schnitzke, K., Schultz, L., Wecker, J., and Katter, M., Appl. Phys. Lett. 56, 587 (1990).Google Scholar
4. Childress, J. R., Chien, C. L., Nathan, M., Appl. Phys. Lett. 56, 96 (1990).Google Scholar
5. Akinaga, H., Miyanishi, S., Tanaka, K., Van Roy, W., and Onodera, K., Appl. Phys. Lett. 76, 97 (2000).Google Scholar
6. Xiao, G. and Chien, C. L., Appl. Phys. Lett. 51, 1280 (1987).Google Scholar
7. Linderoth, S. and Pedersen, M. S., J. Appl. Phys. 75, 5867 (1994).Google Scholar
8. Li, S. P., Lew, W. S., Xu, Y. B., Hirohata, A., Samad, A., Baker, F., and Bland, J. A. C., Appl. Phys. Lett. 76, 748 (2000).Google Scholar
9. Dahlgren, M. and Gorssinger, R., Mater. Sci. Forrum, 302–303, 263 (1999).Google Scholar
10. Chien, C. L., in “Science and Technology of Nanostructured Materials”, page 477, editors: Hadjipanayis, G. C. and Prinz, G. A., Plenum press, New York, 1991.Google Scholar
11. McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, M., Staley, S. W., Phys. Rev. B 49, 11358 (1994).Google Scholar
12. Wirth, S. and von Molnar, S., J. Appl. Phys. 87, 7010 (2000).Google Scholar
13. Meldrim, J. M., Qiang, Y., Liu, Y., Haberland, H., Sellmyer, D. J., J. Appl. Phys. 87, 7013 (2000).Google Scholar
14. Roy, S., Roy, B., and Chakravorty, D., J. Appl. Phys. 79, (1996).Google Scholar
15. Navarro, I., Pulido, E., Crespo, P., and Hernando, A., J. Appl. Phys. 73, 6525 (1993).Google Scholar
16. Marchand, A., Barbara, B., Mollard, P., Fillion, G., Devaux, X., and Rousset, A., J. Magn. Mater. 116, 64 (1992).Google Scholar
17. Teng, C. W., Muth, J. F., Kolbas, R. M., Hassan, K. M., Sharam, A. K., Kvit, A., and Narayan, J., Appl. Phys. Lett. 76, 43 (2000).Google Scholar
18. Belous, M. W., Rudoj, Y. N., Trusov, L. I., and Novikov, V. I., Phys. Lett. A 154, 81 (1991).Google Scholar
19. O'Donnell, K., Rao, X -L, Cullen, J. R. and Coey, J. M. D., IEEE Trans. Magn. 33, 3886 (1997).Google Scholar
20. Pardavi-Horvath, M., J. Magn. Magn. Mater. 203, 57 (1999).Google Scholar
21. Rath, C., Mishra, N. C., Anand, S., Das, R. P., Sahu, K. K., Upadhyay, C., and Verma, H. C., Appl. Phys. Lett. 76, 475 (2000).Google Scholar
22. Prados, C., Multigner, M., Hernando, A., Sanchez, J. C., Fernandez, A., Conde, C. F., and Conde, A., J. Appl. Phys. 85, 6118 (1999).Google Scholar
23. Peng, Y., Zhang, H., Pan, S-Lin, and Li, Hu-Lin, J. Appl. Phys. 87, 7405 (2000).Google Scholar
24. Katine, J. A., Albert, F. J., and Buhrman, R. A., Appl. Phys. Lett. 76, 354 (2000).Google Scholar
25. Cullity, B. D., in “Introduction to Magnetic materials”, Addison_Wesley Publishing Company, Massachusetts, 1972.Google Scholar
26. Girt, Er., Krishnan, K. M., Thomas, G., Altounian, Z., Appl. Phys. Lett. 76, 1746 (2000).Google Scholar