Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-18T23:51:36.825Z Has data issue: false hasContentIssue false

The Ultrafast Carrier Dynamics in Semiconductors: The Role of Defects

Published online by Cambridge University Press:  26 February 2011

P. M. Fauchet
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester NY 14623 also with The Institute of Optics
G. W. Wicks
Affiliation:
also with The Institute of Optics
Y. Kostoulas
Affiliation:
also with the Department of Physics & Astronomy
A. I. Lobad
Affiliation:
also with the Department of Physics & Astronomy
K. B. Ucer
Affiliation:
also with the Department of Electrical Engineering
Get access

Abstract

The presence of point defects is expected to influence the properties of free carrier in semiconductors. We have used the techniques of ultrafast laser spectroscopy to characterize the dynamics of photoinjected carriers in several III–V semiconductors grown at low temperature. The initial scattering time and the lifetime of the carriers become very short at low growth temperatures. Results obtained with low-temperature grown III–Vs are compared to those obtained with III–Vs grown at normal temperatures and amorphous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Low temperature (LT) GaAs and related materials, Witt, G.L. et al editors, Mat. Res. Soc. Symp. Proc. 241 (Pittsburgh, PA, 1992).Google Scholar
[2] The photodetector is manufactured by Picometrix and commercialized by Newport Co.Google Scholar
[3] Look, D.C., He, Y., Ramdani, J., El-Masry, N. and Bedair, S.M., Appl. Phys. Lett. 63, 1231 (1993).Google Scholar
[4] Tousley, B.C., Mehta, S.M., Lobad, A.I., Rodney, P.J., Fauchet, P.M. and Cooke, P., J. Electron. Mater. 22, 1477 (1993).Google Scholar
[5] Dreszer, P., Chen, W. M., Wasik, D., Leon, R., Walukiewitz, W., Liang, B. W., Tu, C. W. and Weber, E. R., J. Electron. Mater. 22, 1487, (1993).Google Scholar
[6] Gong, T., Nighan, W.L. Jr. and Fauchet, P.M., Appl. Phys. Lett. 57, 2713 (1990).Google Scholar
[7] Kostoulas, Y., Waxer, L.J., Walmsley, I.A., Wicks, G.W. and Fauchet, P.M., Appl. Phys. Let. 66, 1821 (1995).Google Scholar
[8] Kostoulas, Y., Ucer, K.B., Wicks, G.W. and Fauchet, P.M., submitted for publication.Google Scholar
[9] Claverie, A., Yu, K.M., Swider, W., Liliental-Weber, Z., O’Keefe, M., Kilaas, R., Pamulapati, J. and Bhattacharya, P.K., Appl. Phys. Lett. 60, 989 (1992).Google Scholar
[10] Kostoulas, Y., Gong, T., Tousley, B.C., Wicks, G.W., Cooke, P. and Fauchet, P.M., in Ultrafast Phenomena in Semiconductors, edited by Ferry, D.K. and van Driel, H. (SPIE, Bellingham, WA, 1994), SPIE Proc. 2142, p 100.Google Scholar
[11] Shah, J., Deveaud, D., Damen, T.C., Tsang, W.T., Gossard, A.C. and Lugli, P., Phys. Rev. Lett. 59, 222 (1987).Google Scholar
[12] Gong, T., Mertz, P., Nighan, W.L. Jr. and Fauchet, P.M., Appl. Phys. Lett. 59, 712 (1991).Google Scholar
[13] Fauchet, P. M., Hulin, D., Vanderhaghen, R., Mourchid, A. and Nighan, W. L. Jr., J. Non-Cryst. Solids 141, 76 (1992).Google Scholar
[14] Bambha, N. K., Nighan, W. L. Jr., Campbell, I. H., Fauchet, P. M. and Johnson, N. M., J. Appl. Phys. 63, 2316 (1988).Google Scholar
[15] Fauchet, P.M., Mat. Res. Soc. Symp. Proc. 358, 525 (1995).Google Scholar
[16] Mourchid, A., Hulin, D., Tanguy, C., Vanderhaghen, R., Nighan, W. L. Jr., Gzara, K. and Fa, P. M. Solid State Commun. 74, 1197 (1990).Google Scholar
[17] Hulin, D., Mourchid, A., Fauchet, P.M., Nighan, W.L. Jr. and Vanderhaghen, R., J. Non-Cryst. S & 138, 527 (1991).Google Scholar