Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-24T15:23:16.791Z Has data issue: false hasContentIssue false

Ungated Vacuum Field Emission from Ordered Arrays of Microlithographically Defined Cylinders

Published online by Cambridge University Press:  25 February 2011

James J. Hickman
Affiliation:
Science Applications International Corp., 1710 Goodridge Drive, McLean, VA 22102
J. H. Georger
Affiliation:
GEO-Centers, Inc., Fort Washington, MD 20744
M. Anderson
Affiliation:
GEO-Centers, Inc., Fort Washington, MD 20744
G. L. Bergeron
Affiliation:
Science Applications International Corp., 1710 Goodridge Drive, McLean, VA 22102
D. A. Kirkpatrick
Affiliation:
Science Applications International Corp., 1710 Goodridge Drive, McLean, VA 22102
Get access

Abstract

A new process has been developed which allows electroless metal deposition on ordered arrays of resist structures with high aspect ratios (10–25 μm tall x 0.5–13 μm diameter). The fabricated structures have demonstrated ungated vacuum field emission at fields of 80–300 kV/cm in background pressures of 5 × 10-6 torr. The surface composition and Interface contamination relate directly to cathode performance. Cathode performance can be optimized by controlling the chemistry at these interfaces. X-ray Photoelectron Spectroscopy depth profiles, Scanning Auger Electron Spectroscopy, and Scanning Electron Microscopy have been used to characterize this system. These structures have potential vacuum microelectronics applications such as addressable electron emitters for flat panel displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Utsumi, T., IEEE Trans. Electron Devices 38, 2276 (1991).Google Scholar
2. Spindt, C. A., Brodie, I., Humphrey, L., and Westerberg, E. R., J. Appl. Phys. 47, 5248 (1976).Google Scholar
3. Spindt, C. A., Holland, C. E., Brodie, I., Mooney, J. B., and Westerberg, E. R., IEEE Trans. Electron Devices 36, 225 (1989).Google Scholar
4. Ganguly, A. K., Phillips, P. M., and Gray, H. F., J. Appl. Phys 67, 7098 (1990).Google Scholar
5. Kirkpatrick, D. A., Bergeron, G. L., Czarnaski, M. A., Hickman, J. J., Chow, G. M., Price, R., Ratna, B. L., Schoen, P. E., Stockton, W. B., Barai, S., Ting, A. C., and Schnur, J. M., Appl. Phys. Lett. 60, 1556 (1992).Google Scholar
6. Kirkpatrick, D. A., Bergeron, G. L., Czarnaski, M. A., Davidson, R. C., Freund, H. P., Hickman, J. J., Mankofsky, A., Tsang, K. T., Schnur, J. M., Levinson, M., and Ditchek, B. M., in Nuclear Instruments and Methods in Physics Research. (Elsevier Science Publishers, New York, 1991), p. 1.Google Scholar
7. Chow, G. M., Stockton, W. B., Price, R., Barai, S., Ting, A. C., Ratna, B. R., Schoen, P. E., Schnur, J. M., Bergeron, G. L., Czarnaski, M. A., Hickman, J. J., and Kirkpatrick, D. A., accepted for publication in J. Mater. Sci. Eng.Google Scholar
8. Georger, J. H. Jr, Rebbert, M. L., Anderson, M. A., Park, D., Hickman, J. J., Calvert, J. M., Dulcey, C. S., and Peckerar, M. C., submitted for publication in Proc. Mater. Res. Soc, San Francisco, April 1992.Google Scholar
9. Hickman, J. J., Bergeron, G., Czarnaski, M., and Kirkpatrick, D. A., submitted to Appl. Phys. Lett.Google Scholar
10. Fowler, R. H. and Nordheim, L., Proc. R. Soc. London A. 119, 173 (1928).Google Scholar
11. Kirkpatrick, D. A., Bergeron, G. L., Czarnaski, M. A., Hickman, J. J., Levinson, M., Nguyen, Q. V., and Ditchek, B. M., Appl. Phys. Lett. 52, 2094 (1991).Google Scholar