Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T19:02:55.290Z Has data issue: false hasContentIssue false

Uraninite-Water Interactions in an Oxidizing Environment

Published online by Cambridge University Press:  03 September 2012

M. Fayek
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA 87131, fayek@unm.edu, rewing@unm.edu, mmiller@unm.edu
T. K. Kyser
Affiliation:
Department of Geological Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6, kyser@Geol.QueensU.ca
R. C. Ewing
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA 87131, fayek@unm.edu, rewing@unm.edu, mmiller@unm.edu
M. L. Miller
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA 87131, fayek@unm.edu, rewing@unm.edu, mmiller@unm.edu
Get access

Abstract

Exceptionally low δ 18O values of primary uraninite and pitchblende (i.e. -32 per mil to -19.5 per mil) from Proterozoic unconformity-type uranium deposits in Saskatchewan, Canada, in conjunction with theoretical uraninite-water oxygen isotope fractionation factors suggest that primary uranium mineralization is not in oxygen isotopie equilibrium with clays and silicates. The low δ 18O values have been interpreted to have resulted from the recrystallization of primary uranium mineralization in the presence of modern meteoric fluids having low δ 18O values of ca. -18 per mil. The absence of apparent alteration in many of the uraninite and pitchblende samples requires that the uranium minerals exchange oxygen isotopes with fluids, with only minor disturbances to their original chemical compositions and textures. However, experiments on the interaction between water and natural uraninites, from these deposits, and detailed electron micro-probe analyses of natural uraninite and pitchblende indicate that, in the presence of water, old uraninite rapidly alters to curite (Pb2U5O174H2O). The hydration of uraninite to curite releases uranium and calcium into solution and becquerelite (Ca(UO2)6O4(OH)6H2O) is precipitated. In the presence of Si-saturated waters, uranium silicate minerals, soddyite ((UO2)2(SiO4)2H2O) and kasolite (Pb(UO2)SiO4H2O are precipitated in addition to, curite and schoepite ((UO2)8O2(OH)12(H2O)12). The mineral paragenesis observed in these experiments is similar to sequences observed in oxidized zones in uranium deposits and UO2-water experiments. Therefore, it is unlikely that natural uraninite and pitchblende can simply exchange oxygen with an oxidizing fluid without a concomitant change in phase chemistry or structure, nor will oxidation of uraninite lead to the formation of U3O7. as predicted by theoretical calculations used in natural analogue studies for the disposal of high level nuclear waste.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Finch, R.J. and Ewing, R.C., J. Nucl. Mater., 190, p. 133156 (1992).Google Scholar
2. Janeczek, J., Ewing, R.C., Oversby, V.M. and Werme, L.O., J. Nucl. Mater., in press (1996).Google Scholar
3. Hattori, K. and Halas, S., Geochim. Cosmochim. Acta, 46, p. 18631868 (1982).Google Scholar
4. Hoekstra, H.R. and Katz, J.J., U.S. Geological Survey Professional Paper 300, p. 543547 (1956).Google Scholar
5. Hattori, K., Muehlenbachs, K., and Morton, D., Geol. Soc. Amer.-Geol. Soc. Can., Pgm. w Abst, 10, A417 (1978).Google Scholar
6. Kotzer, T.G. and Kyser, T.K., Am. Mineral., 78, p. 12621274 (1993).Google Scholar
7. Fayek, M. and Kyser, T.K., accepted, Can. Min (1996).Google Scholar
8. Zheng, Y., Geochim. Cosmochim. Acta., 55, p. 22992307 (1991).Google Scholar
9. Wilson, M.R. and Kyser, T.K., Econ. Geol., 82, p. 14501557 (1987).Google Scholar
10. Kotzer, T.G. and Kyser, T.K., Sask. Energy and Mines, Sask. Geol. Surv., Misc. Rep. 90–4, p. 153157 (1990).Google Scholar
11. Kotzer, T.G. and Kyser, T.K., Chern. Geol., 120, p. 4589 (1995).Google Scholar
12. Janeczek, J., Ewing, R.C. and Thomas, L.E., J. Nucl. Mater., 207, p. 177191 (1993).Google Scholar
13. Cramer, J.J. and Smellie, J.A.T., AECL Rep. 10851 (1994).Google Scholar
14. Cramer, J.J., AECL Rep. 11204 (1995).Google Scholar
15. Smellie, J.A.T. and Karlsson, F., SKB Tech. Rep. TR 96–08, (1996).Google Scholar
16. Bowles, J.F.W., Chem. Geol., 83, p. 4753 (1990).Google Scholar
17. Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. and Tani, B.S., J. Nucl. Mater., 190, p. 107127 (1992).Google Scholar
18. Grandstaff, D.E., Econ. Geol., 71, p. 14931506 (1976).Google Scholar
19. Gronvold, F., J. Inorg. Nucl. Chem., 1, p. 357370 (1955).Google Scholar
20. Berman, R.M., Journal of the Mineralogical Society of America, 42, p. 705731 (1957).Google Scholar
21. Powers, L. and Stauffer, M., Can. J. Earth Sci., 25, p 19451954 (1985).Google Scholar
22. Janeczek, J. and Ewing, R.C., R.C., J. Nucl. Mater., 190, p. 128132 (1992).Google Scholar
23. O'Neil, J.R., Stable Isotopes in High Temperature Geological Processes, eds. Valley, J. W., Taylor, H.P., O'Neil, J.R. (Reviews in Mineralogy, 16, Mineral. Soc. of Amer, 1986), p. 137.Google Scholar
24. Kieffer, S.W., Rev. Geophys. Space Phys., 30–4, p. 827849 (1982).Google Scholar
25. Becker, R.H. and Clayton, R.N., Geochim. Cosmochim. Acta, 40, p. 11511165 (1976).Google Scholar