Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-16T23:35:55.365Z Has data issue: false hasContentIssue false

Vacancy-Type Defects in Electron and Proton Irradiated II-VI Compounds

Published online by Cambridge University Press:  10 February 2011

S. Brunner
Affiliation:
Institut fur Technische Physik, Technische Universitat Graz, A-8010 Graz, Austria, wp@ifk.tu-graz.ac.at
W. Puff
Affiliation:
Institut fur Technische Physik, Technische Universitat Graz, A-8010 Graz, Austria, wp@ifk.tu-graz.ac.at
P. Mascher
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
A.G. Balogh
Affiliation:
Department of Materials Science, Technische Hochschule Darmstadt, Darmstadt, Germany
Get access

Abstract

In this contribution we present a study aimed at comparing results of positron-lifetime and Doppler-broadening measurements on the wide-band-gap compound semiconductors ZnS, ZnSe, and ZnTe. To investigate the basic properties of intrinsic and radiation induced defects the samples were irradiated either with 3 MeV protons or 1 MeV electrons. The isochronal annealing was performed in an Ar atmosphere. It was found that electron and proton irradiation cause different changes in the positron annihilation characteristics. Several annealing stages were observed, related to the annealing of variously sized vacancy complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Park, R. M. et al. , Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
2. Haase, M. A., Qiu, J., DePuydt, J. M., and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).Google Scholar
3. Watkins, G. D., J. Cryst. Growth 159, 338 (1996), and references therein.Google Scholar
4. Meyer, B. K. and Stadler, W., J. Cryst. Growth 161, 119 (1996), and references therein.Google Scholar
5. Puff, W., Comput. Phys. Commun. 30, 359 (1983).Google Scholar
6. Puff, W. and Meng, X.-T., J. Appl. Phys. 73, 648 (1993).Google Scholar
7. Dupasquier, A. and Mills, A. P. Jr., Positron Spectroscopy of Solids, ed. (IOS Press, Amsterdam, 1995), p. 780.Google Scholar
8. Plazaola, F., Seitsonen, A. P. and Puska, M. J., J. Phys.: Condens. Matter 6, 8809 (1994).Google Scholar
9. Plazaola, F., Seitsonen, A. P. and Puska, M. J., Materials Sci. Forum 175–178,469 (1995).Google Scholar
10. Brunner, S. et al. , in Materials Modification and Synthesis by Ion Beam Processing, edited by Alexander, D. E. et al. (Mater. Res. Soc. Proc. Proc. 438, Pittsburgh, PA, 1997) pp. 235240.Google Scholar
11. Mascher, P., Dannefaer, S. and Kerr, D., Phys. Rev. B 40, 11764 (1989).Google Scholar
12. Matsuura, K., Tsurumi, I. and Takeda, F., phys. stat. sol. (a) 28, 379 (1975).Google Scholar
13. Watkins, G. D., Inst. Phys. Conf. Ser. 31, 95 (1977).Google Scholar
14. Tessaro, G. and Mascher, P., Materials Sci. Forum 258–263, 1335 (1997).Google Scholar
15. Gorn, I. A. et al. , Sov. Phys. Semicond. 24, 336 (1990).Google Scholar
16. Brunner, S. et al. , Materials Sci. Forum 255–257, 503 (1997).Google Scholar