Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-31T10:53:45.983Z Has data issue: false hasContentIssue false

Vacancy-Type Defects in Proton-Bombarded InP

Published online by Cambridge University Press:  26 February 2011

C. Ascheron
Affiliation:
University of Leipzig, Departments of Nuclear Physics and of Semiconductors. Physics, Linnéstr. 5, 0–7010 Leipzig, Federal Republic of Germany
R. Krause
Affiliation:
Martin Lather University Halle, Department of Physics, Friedemamt-Bach-Platz 6, 0–4020 Halle, Federal Republic of Germany
A. Polity
Affiliation:
Martin Lather University Halle, Department of Physics, Friedemamt-Bach-Platz 6, 0–4020 Halle, Federal Republic of Germany
H. Sobotta
Affiliation:
University of Leipzig, Departments of Nuclear Physics and of Semiconductors. Physics, Linnéstr. 5, 0–7010 Leipzig, Federal Republic of Germany
V. Riede
Affiliation:
University of Leipzig, Departments of Nuclear Physics and of Semiconductors. Physics, Linnéstr. 5, 0–7010 Leipzig, Federal Republic of Germany
Get access

Abstract

In proton-bombarded InP single crystals the fluence-dependent production of vacancy-type radiation defects and their annealing behaviour are studied. The results are interpreted using measurements of the total defect concentration, the carrier concentration and the infrared absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pearton, S. J., Abernathy, C. R., Panish, M. B., Hamm, R. A., Lunardi, L. M.. Appl. Phys. 66, 656 (1989)Google Scholar
[2] Keavney, C. J., Spitzer, M. B., Appl. Phys. Lett. 52, 1439 (1988)Google Scholar
[3] Dyment, J. C., North, J. C., D'Asaro, L. A., J. Appl. Phys. 44, 207 (1988)Google Scholar
[4] Focht, M. W., Schwartz, B., Appl. Phys. Lett. 42, 970 (1983)Google Scholar
[5] Donelly, J. P., Hurwitz, C. E.. Sol. State El. 20, 727 (1977)Google Scholar
[6] Dautremont-Smith, W. C., Lopata, J., Pearton, S. J., Koszi, L. A., Stavola, M., Swaminathan, V., J. Appl. Phys. 66, 1993 (1989)Google Scholar
[7] Pearton, S. J., Corbett, J. W., Shi, T. S.. Appl. Phys. A43, 153 (1987)Google Scholar
[8] Miyoshi, T., Tien, P. K., Martin, R. J., Tennant, D. M., Johnson, A. M., Downey, P. M., Appl. Phys. Lett. 44, 128 (1984)Google Scholar
[9] Dlubek, G., Krause, R., phys. stat. sol. (a) 102, 443 (1987)Google Scholar
[10] Ascheron, C.. phys. stat. eoi. (a) 124. 11 (1991)Google Scholar
[11] Puska, M. J., Mãkinen, S., Mannimen, M., Nieminen, R. M., Phys. Rev. B39, 7666 (1989)Google Scholar
[12] Saarinen, C., Hautojãrvi, P., Vehanen, A., Krause, R., Dlubek, G., Phys. Rev. B39. 5287 (1989)Google Scholar
[13] Jean, D. Y., Gislason, H. P., Donegan, J. F., Watkins, G. D., Phys. Rev. B36, 1324 (1987)Google Scholar
[14] Puska, M. J.. J. Phys. (Cond. Matter) 1, 7347 (1989)Google Scholar
[15] Brandt, W., Appl. Phys. 5. 1 (1974)Google Scholar
[16] Saarinen, K., Hautojãrvi, P., Lank, P., Corbel, C., Phys. Rev. B 44, 100385 (1991)Google Scholar
[17] Nieminen, R. M., Laakkonen, J., Appl. Phys. 20, 181 (1979)Google Scholar
[18] Ascheron, C., Riede, V., Sobotta, H., Neumann, H., Rad. Eff. Def. Solids 115, 145 (1989)Google Scholar
[19] Brudnyi, V. N., Vorobiev, S. A., Tsoi, A. A.. Appl. Phys. Lett. A29, 219 (1982)Google Scholar
[20] Schultz, P. J., Simpson, P. J., Akano, U. G., Mitchell, I. V., these MRS Proc.Google Scholar
[21] Riede, V., Neumann, H., Sobotta, H., Ascheron, C., Grötzschel, R., Solid State Communie. 65, 1063 (1988)Google Scholar
[21] Macrander, A. T., Schwartz, H., Focht, M. W.. J. Appl. Phys. 55, 3595 (1984)Google Scholar
[23] Brailovskii, Yu., Karapetyan, F. K., Megela, I. G., Tartachnik, V. P., phys. stat. sol. (a) 71. 563 (1982)Google Scholar
[24] Thompson, P. E., Binari, S. C., Dietrich, H. B.. Sol. State El. 26, 805 (1983)Google Scholar