Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-10T19:17:28.804Z Has data issue: false hasContentIssue false

Void Morphology in Polyethylene/Carbon Black Composites

Published online by Cambridge University Press:  10 February 2011

D.W.M. Marr
Affiliation:
Chemical Engineering and Petroleum Refining Department, Colorado School of Mines, Golden, CO 80401
M. Wartenberg
Affiliation:
Raychem Corporation, Menlo Park, CA 94025
KB. Schwartz
Affiliation:
Raychem Corporation, Menlo Park, CA 94025
M. M. Agamalian
Affiliation:
Solid State Division, Oak Ridge National Laboratories, Oak Ridge, TN 37830
G. D. Wignall
Affiliation:
Solid State Division, Oak Ridge National Laboratories, Oak Ridge, TN 37830
Get access

Abstract

A combination of small angle neutron scattering (SANS) and contrast matching techniques is used to determine the size and quantity of voids incorporated during fabrication of polyethylene/carbon black composites. The analysis used to extract void morphology from SANS data is based on the three-phase model of microcrack determination via small angle x-ray scattering (SAXS) developed by W. Wu12 and applied to particulate reinforced composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wignall, G.D.; Farrar, N.R.; Morris, S. J. Mat. Sa. 1990, 25, 69.Google Scholar
2 Bates, F. S.; Wignall, G. D. Phys. Rev. Lett., 1986, 57, 1429.Google Scholar
3 Wignall, G. D. Polymer Properties Handbook, American Institute of Physics, 1996, 299.Google Scholar
4 DACA instruments, Santa Barbara, CA.Google Scholar
5 Koehler, W. C. Physica (Utrecht), 1986, 137B, 320.Google Scholar
6 Bates, F. S.; Wignall, G. D. J. Appl;. Cryst., 1986, 20, 28.Google Scholar
7 Dubner, W. S.; Schultz, J. M.; Wignall, G. D. J. Appl. Cryst., 1990, 23, 469.Google Scholar
8 Debye, P.; Bueche, A.M. J.Appl. Phys. 1949, 20, 518.Google Scholar
9 Debye, P.; Anderson, H.R.; Brumberger, H. F. J. Appl. Phys. 1957, 28, 679.Google Scholar
10 Cheung, Y.W., Stein, R.S., Wignall, G.D, Yang, H.E. Macromolecules 1993, 26, 5365.Google Scholar
11 Marr, D.W.M. Macromolecules 1995, 28, 8470.Google Scholar
12 Wu, W.-L Polymer 1982, 23, 1907.Google Scholar