Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T06:34:20.460Z Has data issue: false hasContentIssue false

Volcanic Glass as a Natural Analog for Borosilicate Waste Glass

Published online by Cambridge University Press:  25 February 2011

Maury E. Morgenstein
Affiliation:
Geosciences Management Institute, Inc., 1000 Nevada Highway, Suite 106, Boulder City, Nevada, 89005-1828
Don L. Shettel
Affiliation:
Geosciences Management Institute, Inc., 1000 Nevada Highway, Suite 106, Boulder City, Nevada, 89005-1828
Get access

Abstract

Obsidian and basaltic glass are opposite end-members of natural volcanic glass compositions. Syngenetic and diagenetic tensile failure in basaltic glass (low silica glass) is pervasive and provides abundant alteration fronts deep into the glass structure. Perlitic fracturing in obsidian (high silica glass) limits the alteration zones to an “onion skin” geometry. Borosilicate waste glass behaves similarly to the natural analog of basaltic glass (sideromelane).

During geologic time, established and tensile fracture networks form glass cells (a three-dimensional reticulated pattern) where the production of new fracture surfaces increases through time by geometric progression. This suggests that borosilicate glass monoliths will eventually become rubble. Rates of reaction appear to double for every 12C° of temperature increase. Published leach rates suggest that the entire inventory of certain radionuclides may be released during the 10,000 year regulatory time period. Steam alteration prior to liquid attack combined with pervasive deep tensile failure behavior may suggest that the glass waste form is not license defensible without a metallic- and/or ceramic-type composite barrier as an overpack.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ewing, R.C., in Scientific Basis for Nuclear Waste Management, ed. by McCarthy, G. (Plenum Press, New York, 1979) I, p. 57.Google Scholar
2 Byers, C.D., Jercinovic, M.J., Ewing, R.C., and Keil, K., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A., and Ewing, R.C. (Mat. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985) p. 583590.Google Scholar
3 Lutze, W., Mallow, G., Ewing, R.C., Jercinovic, M.J., and Keil, K., Nature, 314, 252 (1985).CrossRefGoogle Scholar
4 Petit, J.C., Applied Geochem. S.I.1, 9 (1992).Google Scholar
5 Honnorez, J., Publ. Vulkaninsitut Immanuel Friedlaender, 9, 131p. (1972).Google Scholar
6 Honnorez, J., in The Sea, Wiley Interscience, 525 (1981).Google Scholar
7 Crovisier, J.L., Honnorez, J., and Eberhardt, J.P., Geochim. Cosmochim. Acta, 51, 2977 (1987).Google Scholar
8 Crovisier, J.L., Honnorez, J., Fritz, B., and Petit, J.C., Applied Geochem. S.I.1, 55 (1992).CrossRefGoogle Scholar
9 Magonthier, M.C., Petit, J.C., and Dran, J.C., Applied Geochem. S.I.1, 83 (1992).Google Scholar
10 Greene, C.H., Scientific American 204, 92 (1961).CrossRefGoogle Scholar
11 Charles, R.J., J. Applied Physics 25, 1549 (1958).CrossRefGoogle Scholar
12 Morey, G.W. and Bowen, N.L., J. Soc. Glass Technol. 11, 97 (1927).Google Scholar
13 Zachariassen, W.H., J. Amer. Chem. Soc. 54, 3841 (1932).Google Scholar
14 Sun, K.H., J. Amer. Chem. Soc. 30, 277 (1947).Google Scholar
15 Von Walterschausen, W., Goettinger Studien 1, 371 (1845).Google Scholar
16 Morgenstein, M.E., MS thesis, Syracuse University (1969).Google Scholar
17 Morgenstein, M.E. and Riley, T.J., Asian Perspect. 17, 145 (1975).Google Scholar
18 Peacock, M.A., in: Trans. Royal Society of Edinburg 35, 51 (1926).Google Scholar
19 Morgenstein, M.E. and Felsher, M., Pacific Science 25, 301 (1971).Google Scholar
20 Thorseth, I.H., Furnes, H., and Tumyr, O., Geochim. Cosmochim. Acta 55, 731 (1991).CrossRefGoogle Scholar
21 Morgenstein, M.E., Sedimentology 9, 105 (1967).CrossRefGoogle Scholar
22 Morgenstein, M.E. and Shettel, D.L. in: High Level Rad. Waste Management, Proc. Fourth Annual Internat. Conf. 2 (Amer. Nuclear Soc., La Grange Park, IL, 1993) pp. 17281734.Google Scholar
23 Jakobsson, S.P. and Moore, J.G., Geol. Soc. Amer. Bull. 97, 648 (1986).2.0.CO;2>CrossRefGoogle Scholar
24 Ross, C.S. and Smith, R.L., Amer. Mineral. 40, 1071 (1955).Google Scholar
25 Friedman, I.I., and Smith, R.L., Amer. Antiquity 25, 476 (1960).CrossRefGoogle Scholar
26 Friedman, I.I., Smith, R.L., and Long, W.D., Geol. Soc. Amer. Bull. 77, 323 (1966).CrossRefGoogle Scholar
27 Nasedkin, V.V., Geochem. Intern. 2, 317 (1964).Google Scholar
28 Bourcier, W.L., Lawrence Livermore Nat. Lab. UCRL-JC-104531 (1991).Google Scholar
29 Bates, J.K., Ebert, W.L., Bourcier, W.L., and Bradley, J.P., Radioactive Waste Management ANL/CP-71299, 720 (1991).Google Scholar
30 Bates, J.K., et al. , Radioactive Waste Management, ANL-93/13 (1993).Google Scholar
31 Molecke, M.A., Sorensen, N.R., Harbour, J.R., and Ferrara, D. M., in High Level Rad. Waste Management, Proc. Fourth Annual Internat. Conf. 1 (Amer. Nuclear Soc., La Grange Park, IL, 1993) pp. 558562.Google Scholar
32 Sang, J.C., Barkatt, A., Talmy, I.G., and Norr, M.K., in Scientific Basis for Nuclear Waste Management, edited by Interrante, C.G. and Pabalan, R.T. (Mat. Res. Soc Symp. Proc. 294, Pittsburgh, PA, 1992) pp. 583589.Google Scholar
33 Barkatt, A., Olszowka, S.A., Sousanpour, W., Adel-Hadadi, M.A., Adiga, R., Barkatt, Al., Marbury, G.S., and Li, S., in Scientific Basis for Nuclear Waste Management, edited by Apted, M.J. and Westerman, R.E. (Mat. Res. Soc. Symp. Proc. 212, Pittsburgh, PA, 1991) p. 65.Google Scholar
34 Treuil, M., in Uranium Deposits in Volcanic Rocks, Proc Tech. Comm. Mtg. Int. Atomic Energy Agency, Vienna 1985, pp. 5367.Google Scholar
35 Daux, V., Crovisier, J.L., and Petit, J.C., in Scientific Basis for Nuclear Waste Management, edited by Apted, M.J. and Westerman, R.E. (Mat. Res. Soc. Symp. Proc. 212, Pittsburgh, PA, 1991) pp. 107114.Google Scholar
36 Preuss, K. and Tsang, Y., in High Level Rad. Waste Management, Proc. Fourth Annual Internat. Conf. 1 (Amer. Nuclear Soc, La Grange Park, IL, 1993) pp. 568575; T.A. Buscheck and J.J. Nitao, ibid., pp. 847-867.Google Scholar
37 Krauskopf, K., Chemical Geology, 55, 323 (1986).CrossRefGoogle Scholar
38 Bates, J.K., Bradley, J.P., Teetsov, A., Bradley, C.R., and Ten Brink, M.B., Science 256, 649 (1992).Google Scholar
39 Wronkiewicz, D.J., Young, J.E., and Bates, J.K., in Scientific Basis for Nuclear Waste Management, edited by Apted, M.J. and Westerman, R.E. (Mat. Res. Soc. Symp. Proc. 212, Pittsburgh, PA, 1991) pp. 99106.Google Scholar
40 Wronkiewicz, D.J., Wang, L.M., Bates, J.K., and Tani, B.S., in Scientific Basis for Nuclear Waste Management, edited by Interrante, C.G. and Pabalan, R.T. (Mat. Res. Soc. Symp. Proc. 294, Pittsburgh, PA, 1992) pp. 183190.Google Scholar
41 Bates, J.K., Gerding, T.J., Ebert, W.L., Mazer, J.J., and Biwer, B.M., Lawrence Livermore Nat. Lab. UCRL-21060-87-2 (1988).Google Scholar
42 Martin, D.M., U.S. Nuclear Regulatory Comm. NUREG/CR-4198 (1985).Google Scholar
43 Baxter, R.G., Savannah River Plant DP-1606-Rev. 2 (1988).Google Scholar
44 Hunter, R.L., Cranwell, R.M., and Chu, M.S.Y., U.S. Nuclear Regulatory Comm. NUREG/CR-45IO(1986).Google Scholar
45 Bates, J.K. and Gerding, T.J., Argonne Nat. Lab. ANL-89/24 (1990).Google Scholar