Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T07:17:12.911Z Has data issue: false hasContentIssue false

Wet and Dry Etching of InGaP

Published online by Cambridge University Press:  26 February 2011

J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Kuo
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The wet chemical etching rates of InGaP in H3 PO4:HCL:H2O mixtures have been systematically measured as a function of etch formulation and are most rapid (-1 μm · min−1) for high HCl compositions. The etch rate, R, in a 1:1:1 mixture is thermally activated of the form R ∝ e−Ea/kT, where Ea = 11.25 kCal · mole−1. This is consistent with the etching being reaction-limited at the surface. This etch mixture is selective for InGaP over GaAs. For chlorine-based dry etch mixtures (PCl3 /Ar or CCl2 F2 /Ar) the etching rate of InGaP increases linearly with DC self-bias on the sample, whereas CH4/H2-based mixtures produce slower etch rates. Selectivities of ≥500 for etching GaAs over InGaP are obtained under low bias conditions with PCl3/Ar, but the surface morphologies of InGaP are rough. Both CCl2F2/Ar and CH4/H2/Ar mixtures produce smooth surface morphologies and good (>10) selectivities for etching GaAs over InGaP.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Biswas, D., Debbar, N., Bhattacharya, P., Razeghi, M., Defour, M. and Omnes, F., Appl. Phys. Lett. 56 833 (1990).Google Scholar
2. Olson, J. M., Ahrenkiel, R. K., Dunlavy, D. J., Keyes, B. M. and Kibler, A. E., Appl. Phys. Lett. 55 1208 (1990).Google Scholar
3. Ahrenkiel, R. A., Olson, J. M., Dunlavy, D. J., Keyes, B. M. and Kibbler, A. E., J. Vac. Sci. Technol. A 8 2002 (1990).Google Scholar
4. Kuo, C. P., Vong, S. K., Cohen, R. M. and Stringfellow, G. B., J. Appl. Phys. 57 5428 (1985)Google Scholar
5. Su, Y. K., Wu, M. C., Chang, C. Y. and Cheng, K. Y., J. Cryst. Growth, 76 299 (1986).CrossRefGoogle Scholar
6. Dallesasse, J. M., Szafranek, I., Baillurgeon, J. N., Al-Zein, N., Holonyak, N. Jr, Stillman, G. E. and Cheng, K. Y., J. Appl. Phys. 68 5866 (1990).CrossRefGoogle Scholar
7. Kobayashi, K., Hino, I., Gomyo, A., Kawata, S. and Suzuki, T., IEEE J. Quantum Electron. 23 704 (1987).Google Scholar
8. Quigley, J. H., Hafich, M. J., Lee, H. Y., Stare, R. E. and Robinson, G. Y., J. Vac. Sci. Technol. B 7 358 (1989).Google Scholar
9. Nain, D. W., Deppe, D. G., Holonyak, N. Jr, Fletcher, R. M., Kuo, C. D., Osentowski, T. D. and Craford, M. G., Appl. Phys. Lett. 52 1329 (1988).Google Scholar
10. Kawata, S., Fuji, H., Kobayashi, K., Gomyo, A., Hino, I. and Suzuki, T., Electron. Lett. 23 1327 (1987).Google Scholar
11. Kuo, J. M., Chen, Y. K., Wu, M. C. and Chin, M. A., Appl. Phys. Lett, (in press)Google Scholar
12. Pearton, S. J., Kuo, J. M., Ren, F., Kat z, A., and Perley, A., Appl. Phys. Lett. 59 1467 (1991).Google Scholar
13. Ren, F., Kuo, J. M., Pearton, S. J., Fullowan, T. R. and Lothian, J. R., J. Electronic Mater, (in press).Google Scholar
14. Kuo, J. M. and Fitzgerald, E. A. (unpublished).Google Scholar
15. Pearton, S. J., Nakano, T. and Gottscho, R. A., J. Appl. Phys. 69 4206 (1991).Google Scholar
16. See, for example, VLSI Fabrication Principles, Ghandi, S. K. (Wiley, NY, 1983).Google Scholar
17. Electronic Materials Science and Technology, Murarka, S. P. and Peckerar, M. C. (Academic Press, NY 1989), Chapter 10.Google Scholar
18. See for example, Burton, R. H., Gottscho, R. A. and Smolinsky, G., Chapter 3 in Dry Etching for Microelectronics ed. Powell, R. A. (North-Holland, Amsterdam, 1984).Google Scholar