Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-14T16:15:38.762Z Has data issue: false hasContentIssue false

Palaeozoic and Mesozoic igneous activity in the Netherlands: a tectonomagmatic review

Published online by Cambridge University Press:  01 April 2016

W. Sissingh*
Affiliation:
Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3384 CD Utrecht, The Netherlands; e-mail:w.sissingh@geo.uu.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To date, igneous rocks, either intrusive or extrusive, have been encountered in the Palaeozoic-Mesozoic sedimentary series of the Netherlands in some 65 exploration and production wells. Following 17 new isotopic K/Ar age determinations of the recovered rock material (amounting to a total of 28 isotopic ages from 21 different wells), analysis of the stratigraphic distribution of the penetrated igneous rock bodies showed that the timing of their emplacement was importantly controlled by orogenic phases involving intra-plate wrench and rift tectonics. Magmatism coincided with the Acadian (Late Devonian), Sudetian (early Late Carboniferous), Saalian (Early Permian), Early Kimmerian (late Late Triassic), Mid-Kimmerian (Late Jurassic), Late Kimmerian (earliest Cretaceous) and Austrian (latest Early Cretaceous) tectonic phases. This synchroneity presumably reflects (broadly) coeval structural reorganizations of respectively the Baltica/Fennoscandinavia-Laurentia/Greenland, Laurussia-Gondwana, African-Eurasia and Greenland/Rockall-Eurasia plate assemblies. Through their concomitant changes of the intra-plate tectonic stress regime, inter-plate motions induced intra-plate tectonism and magmatism. These plate-tectonics related events determined the tectonomagmatic history of the Dutch realm by inducing the formation of localized centres, as well as isolated spot occurrences, of igneous activity. Some of these centres were active at (about) the same time. At a number of centres igneous activity re-occurred after a long period of time.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

André, L., 1991. The concealed crystalline basement in Belgium and the ‘Brabantia’ microplate concept: constraints from the Caledonian magmatic and sedimentary rocks. Annales de la Société Géologique de Belgique 114: 117–139.Google Scholar
André, L. & Deutsch, S., 1985. Very low-grade metamorphic Sr isotopic resettings of magmatic rocks and minerals: evidence for a late Givetian strike-slip division of the Brabant Massif, Belgium. Journal of the Geological Society of London 142: 911–923.Google Scholar
André, L., Hertogen, J. & Deutsch, S., 1986. Ordovician-Silurian magmatic provinces in Belgium and the Caledonian orogeny in middle Europe. Geology 14: 879–882.Google Scholar
Arthaud, F. & Matte, P., 1977. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: results of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88: 1305–1320.2.0.CO;2>CrossRefGoogle Scholar
Bless, M.J.M., Bouckaert, J. & Paproth, E., 1983. Recent exploration around the Brabant Massif in Belgium, The Netherlands and the Federal Republic of Germany. Geologie en Mijnbouw 62:51–62 Google Scholar
Bredewout, J.W., 1997. The character of the Erkelenz intrusivs as derived from geophysical data. Geologie en Mijnbouw 68: 445–454.Google Scholar
Buntebarth, G. & Teichmüller, R., 1979. Zur Ermittlung der Paläotemperaturen im Dach des Bramscher Intrusive aufgrund von Inkohlungsdaten. Fortschritte in den Geologie von Rheinland und Westfalen 27: 171–182.Google Scholar
Cottençon, A., Parant, B. & Flacelière, G., 1975. Lower Cretaceous gas-fields in Holland. In: Woodland, A.W. (Ed.): Petroleum and the Continental Shelf of North-West Europe. Applied Science Publ. (Barking): 403–412.Google Scholar
Delcambre, B., 1987. Application de la typologie du zircon à la tephrostratigraphie du Westphalien C de la Belgique et des régions limitrophes. Bulletin de la Société Belge de Géologie 96: 129–136.Google Scholar
Dixon, J.E., Fitton, J.G. & Frost, R.T.C., 1981.The tectonic significance of post-Carboniferous igneous activity in the North Sea Basin. In: Illing, L.V. & Hobson, G.D. (Eds): Petroleum Geology of the Continental Shelf of North-West Europe. Heyden & Son Ltd. (London): 121–137.Google Scholar
Dronkers, A.J. & Mrozek, F.J., 1991. Inverted basins of The Netherlands. First Break 9: 409–425.CrossRefGoogle Scholar
Eckhart, F.-J., 1968. Vorkommen und Petrogenese spilitisierter Diabase der Rotliegenden im Weser-Ems-Gebiet. Geologisches Jahrbuch 85: 227–264.Google Scholar
Eckhart, F.-J., 1979. Der permische Vulkanismus Mitteleuropas. Geologisches Jahrbuch D 35: 3–84.Google Scholar
Eigenfeld, R.W.F. & Eigenfeld-Mende, I., 1986. Niederländische permokarbone basische Magmatite als Fortsetzung der spilitisierten Effusiva in NW-Deutschland. Mededelingen Rijks Geologische Dienst 40 (1): 11–21.Google Scholar
Frost, R.T.C., Fitch, J.L. & Miller, J.A., 1981. The age and nature of the crystaline basement of the North Sea Basin. In: Illing, L.V. & Hobson, S.D. (Eds): Petroleum Geology of the Continental Shelf of North-West Europe. Heyden & Son Ltd. (London): 43–57.Google Scholar
Glennie, K.W., 1986. Development of N.W. Europe’s Southerm Permian Gas Basin. Geological Society Special Publication 23: 3–22.CrossRefGoogle Scholar
Glennie, K.W., 1995. Permian and Triassic rifting in northwest Europe. Geological Society Special Publication 91: 1–5.CrossRefGoogle Scholar
Gradstein, F.M. & Ogg, J., 1996. A Phanerozoic time scale. Episodes 19: 3–5.Google Scholar
Grünhagen, H., 1981. Zur Verbreitung der Trachyttufe des Siebengebirges. Fortschritte in den Geologie von Rheinland und Westfalen 29: 59–72.Google Scholar
Harrison, R.K., Snelling, N.J., Merriman, R.J., Morgan, G.E. & Goode, A.J.J., 1977. The Wolf Rock, Cornwall: new chemical, isotopic age and palaeomagnetic data. Geological Magazine 114: 249–264.Google Scholar
Harrison, R.K., Jeans, C.V. & Merriman, R.J., 1979. Mesozoic igneous rocks, hydrothermal mineralisation and volcanogenic sediments in Britain and adjacent regions. Bulletin of the Geological Survey of Great Britain 70: 57–69.Google Scholar
Herngreen, G.F.W., Smit, R. & Wong, T.E., 1991. Stratigraphy and tectonics of the Vlieland Basin, the Netherlands. Special Publication of the European Association of Petroleum Geoscientists 1: 175–192.Google Scholar
Jacqué, M. & Thouvenin, J., 1975. Lower Tertiary tuffs and volcanic activity in the North Sea. In: Woodward, A.W. (Ed.): Petroleum and the Continental Shelf of North-West Europe, Vol.1. Applied Science Publ. (Barking): 455–465.Google Scholar
Kettel, D., 1983. The East Groningen Massif - detection of an intrusive body by means of coalification. Geologie en Mijnbouw 62: 203–210.Google Scholar
Kimpe, W.F.M., 1953. Doleritic and gabbroic intrusives in the Autunian (Lower Permian) of the boring Wanneperveen I, Eastern Netherlands. Geologie en Mijnbouw 15: 57–65.Google Scholar
Kimpe, W.F.M., 1966. Occurrence, development and distribution of Upper Carboniferous tonsteins in the paralic West German and Dutch coalfields and their use as stratigraphic marker horizons. Mededelingen van de Geologische Stichting new. ser. 18: 3–10.Google Scholar
Knott, S.D., Burchell, M.T., Jolley, E.J. & Fraser, A.J., 1993. Mesozoic to Cenozoic reconstructions of the North Atlantic and hydrocarbon plays of the Atlantic margins. In: Parker, J.R. (Ed.): Petroleum Geology of Northwest Europe. The Geological Society (London): 953–974.Google Scholar
Kuijper, R.P., 1991. Petrology of a dolerite in Netherlands offshore well G/17-2. Scripta Geologica 97: 33–46.Google Scholar
Lippolt, H.J., Hess, J.C. & Burger, K., 1984. Isotopische Alter von pyroklastischen Sanidinen aus Kaolin-Kohlentonsteinen als Korrelationsmarken für das mitteleuropäische Oberkarbon. Fortschritte in den Geologie von Rheinland und Westfalen 32: 119–150.Google Scholar
Marx, J., Huebscher, H.-D., Hoth, K., Korich, D., & Kramer, W., 1995. Vulkanostratigraphie und Geochemie der Erupkomplexe. In: Plein, E. (Ed.): Stratigraphie von Deutschland I: Norddeutsches Rotliegendbecken: Rotliegend-Monographie Teil II. Courier Forschungs-Institut Senckenberg 183: 54–83.Google Scholar
Odin, G.S., 1994. Geological time scale (1994). Comptes Rendus de l’Académie des Sciences (Paris) 2 318: 59–71.Google Scholar
Pacey, N.R., 1984. Bentonites in the Chalk of central eastern England and their relation to the opening of the north-east Atlantic. Earth and Planetary Science Letters 67: 48–60.Google Scholar
Perrot, J. & van der Poel, A.B., 1987. Zuidwal - a Neocomian gas field. In: Brooks, J. & Glennie, K. (Eds): Petroleum Geology of North West Europe. Graham & Trotman (London): 325–335.Google Scholar
Rijkers, R.H.B. & Geluk, M.C., 1996. Sedimentary and structural history of the Texel-IJsselmeer High, the Netherlands. In: Rondeel, H.E., Batjes, D.A.J. & Nieuwenhuijs, W.H. (Eds): Geology of Gas and Oil under the Netherlands. Kluwer (Dordrecht): 265–284.Google Scholar
Ritchie, J.D., Gatliff, R.W., Richards, P.C., 1999. Early Tertiary magmatism in the offshore NW UK margin and surrounds. In: Fleet, A.J. & Boldy, S.A.R. (Eds): Petroleum Geology of Northwest Europe. The Geological Society (London): 573–584.Google Scholar
Sissingh, W., 1986. Stratigraphic Reference Data Book of the Netherlands. Internal NAM Report (Assen).Google Scholar
Stadler, G. & Teichmüller, R., 1971. Zusammenfassender Überblick über die Entwicklung des Bramscher Massivs und des Niedersächsischen Tektogens. Fortschritte in den Geologie von Rheinland und Westfalen 18: 547–564.Google Scholar
Teichmüller, M. & Teichmüller, R., 1971. Inkohlung. Fortschritte in den Geologie von Rheinland und Westfalen 19: 69–72.Google Scholar
Tesch, P., 1925. Over een intrusie in het Carboon van Oostelijk Gelderland. Geologisch-Mijnbouwkundig Genootschap voor Nederland en Koloniën, Verslagen van de Geologische Sectie: 95.Google Scholar
Tesch, P., 1928. On the occurrence of igneous rocks in the Dutch Carboniferous. le Congres pour l’Avancement des Études de Stratigrafie Carbonifère, Compte Rendu: 731–732.Google Scholar
Tesch, P. & van Voorthuysen, J.H., 1944. Nog drie intrusies in het Carboon van Oost-Gelderland. Geologie en Mijnbouw 5: 56–57.Google Scholar
Thiadens, A.A., 1963. The Palaeozoic of the Netherlands. Verhandelingen van Nederlands Koninklijk Geologisch Mijnbouwkundig Genootschap, Geologische Serie 21 (2): 9–28.Google Scholar
Tomkeieff, S. & Tesch, P., 1931. On a dolerite in the Dutch Carboniferous. Geological Magazine 68: 232–236.Google Scholar
Underhill., J.R. & Partington, M.A., 1993. Jurassic thermal doming and deflation in the North Sea: implications of the sequence stratigraphic evidence. In: Parker, J.R. (Ed.): Petroleum geology of Northwest Europe. The Geological Society (London): 337–345.Google Scholar
Valeton, I., 1960. Vulkanische Tuffiteinlagerung in der nordwestdeutschen Oberkreide. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg 29: 26–41.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P. (comps), 1993. Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst 50.Google Scholar
Van Bergen, M.J. & Sissingh, W., in press.Magmatic expression of the North-West European rifting history in the Netherlands. In: Wong, Th.E., Batjes, D.A.J. & de Jager, J. (Eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (Amsterdam).Google Scholar
Van den Bosch, W.J., 1983. The Harlingen field, the only gas field in the Upper Cretaceous of the Netherlands. Geologie en Mijnbouw 62: 145–156.Google Scholar
Van der Sijp, J.W.C.M., 1953. Intrusive rocks in the Berkel well. Geologie en Mijnbouw 15: 65–66.Google Scholar
Van Montfrans, H.M. & Mot, E., 1984. Mogelijkheden voor de winning van aardwarmte in Nederland. In: Mot, E. (Ed): Verslag van het Nationaal Onderzoekprogramma Aardwarmte en Warmteopslag 1979–1984 (NOA I). Project Bureau Energieonderzooek (Apeldoorn): 8–14.Google Scholar
Van Voorthuysen, J.H., 1944. Hoornblendediabaas-intrusie in het Wealden van Oost-nederland. Geologie en Mijnbouw 5: 24–26.Google Scholar
Van Weelden, A., 1957. History of gravity observations in The Netherlands. Verhandelingen van het Koninklijk Nederlandsch Geologisch-Mijnbouwkundig Genootschap, Geologische Serie 18: 305–308.Google Scholar
Van Wees, J.-D., Stephenson, R.A., Ziegler, P.A., Bayer, U., McCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F & Scheck, M., 2000. On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology 17: 43–59.Google Scholar
Van Wijhe, D.H., 1987. Structural evolution of inverted basins in the Dutch offshore. Tectonophysics 137: 171–219.Google Scholar
Veldkamp, J., 1951. Geomagnetic anomalies in The Netherlands. Geologie en Mijnbouw 13: 218–223.Google Scholar
Vercoutere, C. & van den Haute, P., 1993. Post-Palaeozoic cooling and uplift of the Brabant Massif as revealed by appatite fission track analysis. Geological Magazine 130: 639–646.Google Scholar
Vielzeuf, D. & Kornprobst, J., 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth and Planetary Science Letters 67: 87–96.Google Scholar
Walter, R., 1980. Lower Paleozoic paleogeography of the Brabant Massif and its southern adjoining areas. Mededelingen Rijks Geologische Dienst 32 (2): 14–25.Google Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe. 2nd Ed. Shell Internationale Petroleum Mij. B.V. (The Hague): 239 pp.Google Scholar
Zimmerle, W., 1993. On the lithology and provenance of the Rupelian Boom Clay in northern Belgium, a volcaniclastic deposit. Bulletin de la Société Belge de Geologie 102: 91–103.Google Scholar