Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-21T16:18:33.777Z Has data issue: false hasContentIssue false

Dormancy and cardinal temperatures for germination in seed from nine quinoa genotypes cultivated in Chile

Published online by Cambridge University Press:  05 August 2020

C. Ayala
Affiliation:
Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436Santiago, Chile
F. Fuentes
Affiliation:
Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436Santiago, Chile Facultad de Agronomía e Ingeniería Forestal, Escuela de Ingeniería, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436Santiago, Chile
S. Contreras*
Affiliation:
Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436Santiago, Chile Centro del Desierto de Atacama (CDA), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436Santiago, Chile
*
*Corresponding author. E-mail: scontree@uc.cl

Abstract

In Chile, two quinoa ecotypes are grown: salares, also present in the highlands of Bolivia, and coastal, in central and southern areas of the country, at sea level. Genotypes from the coastal ecotype have characteristics that differentiate them from the most popular quinoa genotypes grown in the Andean Region of South America. The objectives of this study were: (1) to determine the cardinal temperatures for seed germination in quinoa genotypes from coastal and salares ecotypes cultivated in Chile, and (2) to study the presence of physiological dormancy (PD) in these genotypes. Seed germination from nine quinoa genotypes, two from salares and seven from coastal ecotypes, was evaluated in a gradient of temperatures between 11 and 42°C. Germination was also evaluated at 20°C at 0, 7 and 15 months from harvest. Results showed that seed from the nine genotypes germinated at their maximum percentage between 11 and 35°C. However, their faster germination occurred between 25 and 35°C. There was a significant difference between optimum temperature for germination between genotypes from coastal (28°C) and salares (30°C). An increase in germination rates after 7 months of storage suggested the presence of a non-deep PD in seeds from coastal ecotype, which may be useful to improve pre-harvest sprouting resistance in quinoa breeding programmes.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baskin, J and Baskin, C (2004) A classification system for seed dormancy. Seed Science Research 14: 116.CrossRefGoogle Scholar
Bazile, D, Martínez, EA and Fuentes, F (2014) Diversity of quinoa in a biogeographical island: a review of constraints and potential from arid to temperature regions of Chile. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42: 289298.CrossRefGoogle Scholar
Bewley, D, Hilhorst, H, Bradford, K and Nogogaki, H (2013) Seeds: Physiology of Development, Germination and Dormancy, 3rd edn. NY: Springer Science + Business Media, NY Press.CrossRefGoogle Scholar
Bhargava, A, Shukla, S and Ohri, D (2007) Gynomonoecy in Chenopodium quinoa (Chenopodiaceae): variation in inflorescence and floral types in some accessions. Biologia 62: 1923.CrossRefGoogle Scholar
Boero, C, González, JA and Prado, FE (2000) Efecto de la temperatura sobre la germinación de diferentes variedades de ‘quinoa’ (Chenopodium quinoa Willd.). Lilloa 40: 103108.Google Scholar
Ceccato, D, Bertero, D and Batlla, D (2011) Environmental control of dormancy in quinoa (Chenopodium quinoa) seeds: two potential genetic resources for pre-harvest sprouting tolerance. Seed Science Research 21: 133141.CrossRefGoogle Scholar
Côme, D and Corbineau, F (2006) Germination – influences of temperature. In: Black, M, Bewley, JD and Halmer, P (eds) The Encyclopedia of Seeds: Science, Technology and Uses. Trowbridge, UK: CAB International, pp. 271275.Google Scholar
Contreras, S, Bennett, MA and Tay, D (2008) Restricted water availability during lettuce seed production decreases seed yield per plant but increases seed size and water productivity. HortScience 43: 837844.CrossRefGoogle Scholar
FAOSTAT (2019) Statistics Division, Food and Agriculture Organization of the United Nations. Rome, Italy: FAOSTAT. Available online at http://www.fao.org/faostat (Web site accessed October 23, 2019).Google Scholar
Finch-Savage, WE and Leubner-Metzger, G (2006) Seed dormancy and the control of germination. New Phytologist 171: 501523.CrossRefGoogle ScholarPubMed
Fuentes, F, Martinez, EA, Hinrichsen, PV, Jellen, EN and Maughan, PJ (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics 10: 369377.CrossRefGoogle Scholar
González, JA, Buedo, SE, Bruno, M and Prado, FE (2017) Quantifying cardinal temperatures in quinoa (Chenopodium quinoa) cultivars. Lilloa 54: 179194.CrossRefGoogle Scholar
Hinojosa, L, González, JA, Barrios-Masias, FH, Fuentes, F and Murphy, KM (2018) Quinoa abiotic stress responses: a review. Plants 7: 106.CrossRefGoogle ScholarPubMed
InfoStat (2019) InfoStat Versión 2019. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Córdoba, Argentina: InfoStat.Google Scholar
ISTA (2020) International Rules for Seed Testing 2020. The International Seed Testing Association (ISTA) Zürichstr. Bassersdorf, Switzerland: ISTA.Google Scholar
Jacobsen, SE (2017) The scope for adaptation of quinoa in Northern Latitudes of Europe. Journal of Agronomy and Crop Science 203: 603613.CrossRefGoogle Scholar
Luna, B, Pérez, B, Torres, I and Moreno, JM (2012) Effects of incubation temperature on seed germination of Mediterranean plants with different geographical distribution ranges. Folia Geobotanica 47: 1727.CrossRefGoogle Scholar
Madrid, D, Salgado, E, Verdugo, G, Olguín, P, Bilalis, D and Fuentes, F (2018) Morphological traits defining breeding criteria for coastal quinoa in Chile. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46: 190196.CrossRefGoogle Scholar
Mamedi, A, Tavakkol Afshari, R and Oveisi, M (2017) Cardinal temperatures for seed germination of three Quinoa (Chenopodium quinoa Willd.) cultivars. Iranian Journal of Field Crop Science 48(Special Issue): 89100.Google Scholar
Miranda, M, Vega-Gálvez, A, Martínez, E, López, J, Marín, R, Aranda, M and Fuentes, F (2013) Influence of contrasting environments on seed composition of two quinoa genotypes: nutritional and functional properties. Chilean Journal of Agricultural Research 72: 108116.Google Scholar
Murphy, K, Matanguihan, J, Fuentes, F, Gómez-Pando, L, Jellen, E, Maughan, J and Jarvis, D (2018) Quinoa breeding and genomics. Plant Breeding Reviews 42: 257320.CrossRefGoogle Scholar
Oficina de estudios y políticas agrarias (ODEPA) (2018) La quinoa en Chile, el despegue de un grano ancestral. Santiago, Chile: Oficina de estudios y políticas agrarias (ODEPA). Available online at: https://www.odepa.gob.cl/wp-content/uploads/2018/02/quinoa_final2018.pdf (Web site accessed October 23, 2019).Google Scholar
Sigstad, EE and Prado, FE (1999) A microcalorimetric study of Chenopodium quinoa Willd. seed germination. Thermochimica Acta 326: 159164.CrossRefGoogle Scholar
Trade Map (2020) List of exporters for the selected product (Quinoa ‘Chenopodium quinoa’) [Internet]. [cited 2020 May 25]. Available from: https://www.trademap.org.Google Scholar
Vázquez-Luna, A, Fuentes, F, Rivadeneyra, E, Hernández, C and Díaz-Sobac, R (2019) Nutrimental content and functional properties of quinoa flour from Chile and Mexico. Ciencia e Investigación Agraria 46: 144153.CrossRefGoogle Scholar
Vega-Gálvez, A, Miranda, M, Vergara, J, Uribe, E, Puente, L and Martínez, EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain; a review. Journal of the Science of Food and Agriculture 90: 25412547.CrossRefGoogle Scholar
Xiu-shi, Y, Pei-you, Q, Hui-min, G and Gui-xing, R (2019) Quinoa industry development in China. Ciencia e Investigación Agraria 46: 208219.CrossRefGoogle Scholar
Zurita-Silva, A, Fuentes, F, Zamora, P, Jacobsen, S and Schwember, A (2014) Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding 34: 1330.CrossRefGoogle Scholar