Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T18:52:30.546Z Has data issue: false hasContentIssue false

Vegetative propagation, chemical composition and antioxidant activity of yerba mate genotypes

Published online by Cambridge University Press:  30 March 2021

Leandro Marcolino Vieira*
Affiliation:
Universidade Federal do Paraná, Curitiba, Brazil
Renata de Almeida Maggioni
Affiliation:
Universidade Federal do Paraná, Curitiba, Brazil
Jéssica de Cássia Tomasi
Affiliation:
Universidade Federal do Paraná, Curitiba, Brazil
Erik Nunes Gomes
Affiliation:
Rutgers University, New Brunswick, New Jersey, USA
Ivar Wendling
Affiliation:
Embrapa Florestas, Colombo, Paraná, Brazil
Cristiane Vieira Helm
Affiliation:
Embrapa Florestas, Colombo, Paraná, Brazil
Henrique Soares Koehler
Affiliation:
Universidade Federal do Paraná, Curitiba, Brazil
Katia Christina Zuffellato-Ribas
Affiliation:
Universidade Federal do Paraná, Curitiba, Brazil
*
*Corresponding author. E-mail: leandro_marcolinovieira@hotmail.com

Abstract

Ilex paraguariensis, commonly known as yerba mate, is a tree species native to South America. Its commercial value is due to the manufacturing of teas, with potential also in the pharmacological and cosmetic industries. Vegetative propagation of yerba mate is considered an innovation to the traditional production systems based on sexual propagation. The present study aimed to evaluate the rhizogenic potential and chemical attributes of mini-cuttings from 15 yerba mate genotypes, as well as to verify the correlation between phytochemical and rooting-related variables. Mini-cuttings were collected from a pre-existing mini-clonal hedge and the experimental design was completely randomized, with 15 treatments (genotypes), four replications and 10 mini-cuttings per plot. After 120 days, mini-cuttings were assessed regarding rooting, mortality, callogenesis and leaf retention percentages, percentage of mini-cuttings with both calluses and roots, number of roots and average root length. At the time of collection, subsamples from each plot were used for phytochemical analyses including total phenolic compounds, protein, caffeine and theobromine contents and antioxidant activity. Rooting percentages ranged from 5 to 72.5%, with significant variation among genotypes. Adventitious rooting and phytochemical profile of yerba mate mini-cuttings are genotype-dependent. Leaf retention is a relevant factor in the rooting of yerba mate mini-cuttings and the levels of total phenolic compounds, antioxidants and theobromine present in mini-cuttings are negatively correlated components to Ilex paraguariensis adventitious rooting.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists (AOAC) (1984) Official Methods of Analysis, 14th edn. Washington: The Association.Google Scholar
Barbosa, JZ, Motta, ACV, Consalter, R, Poggere, GC, Santin, D and Wendling, I (2018) Plant growth, nutrients and potentially toxic elements in leaves of yerba mate clones in response to phosphorus in acid soils. Anais da Academia Brasileira de Ciências 90: 557571.CrossRefGoogle ScholarPubMed
Bastos, DHM, Fornari, AC, Queiroz, YS and Torres, EA (2006) Bioactive compounds content of chimarrão infusions related to the moisture of yerba maté (Ilex paraguariensis) leaves. Brazilian Archives of Biology and Technology 49: 399404.CrossRefGoogle Scholar
Belniaki, AC, Rabel, LADN, Gomes, EN and Zuffellato-Ribas, KC (2018) Does the presence of leaves on coleus stem cuttings influence their rooting? Ornamental Horticulture 24: 206210.CrossRefGoogle Scholar
Bitencourt, J, Zuffellato-Ribas, KC, Wendling, I and Koeler, HS (2009) Enraizamento de estacas de erva-mate (Ilex paraguariensis A. St.-Hill.) provenientes de brotações rejuvenescidas. Revista Brasileira de Plantas Medicinais 11: 277281.CrossRefGoogle Scholar
Blum-Silva, CH, Chaves, VC, Schenkel, EP, Coelho, GC and Reginatto, FH (2015) The influence of leaf age on methylxanthines, total phenolic content, and free radical scavenging capacity of Ilex paraguariensis aqueous extracts. Revista Brasileira de Farmacognosia 25: 16.CrossRefGoogle Scholar
Bracesco, N, Sanchez, AG, Contreras, V, Menini, T and Gugliucci, A (2011) Recent advances on Ilex paraguariensis research: minireview. Journal of Ethnopharmacology 136: 378384.CrossRefGoogle ScholarPubMed
Braghini, F, Carli, CG, Bonsaglia, B, Junior, JFDSS, Oliveira, DF, Tramujas, J and Tonial, IB (2014) Composição físico-química de erva-mate, antes e após simulação do chimarrão. Pesquisa Agropecuária Gaúcha 20: 715.Google Scholar
Branco, SC, Scola, G, Rodrigues, AD, Cesio, V, Laprovitera, M and Heinzen, H (2013) Anticonvulsant, neuroprotective and behavioral effects of organic and conventional yerba mate (Ilex paraguariensis St. Hil.) on pentylenetetrazol-induced seizures in Wistar rats. Brain Research Bulletin 92: 6068.CrossRefGoogle Scholar
Brand-Williams, W, Cuvelier, ME and Berset, C (1995) Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28: 2530.CrossRefGoogle Scholar
Bravo, L, Mateos, R, Sarriá, B, Baeza, G, Lecumberri, E, Ramos, S and Goya, L (2014) Hypocholesterolaemic and antioxidant effects of yerba mate (Ilex paraguariensis) in high-cholesterol fed rats. Fitoterapia 92: 219229.CrossRefGoogle Scholar
Cardozo Junior, EL and Morand, C (2016) Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health – a review. Journal of Functional Foods 21: 440454.CrossRefGoogle Scholar
Cardozo Junior, EL, Ferrarese-Filho, O, Filho, LC, Ferrarese, MLL, Donaduzzi, CM and Sturion, JA (2007) Methylxanthines and phenolic compounds in mate (Ilex paraguariensis St. Hil.) progenies grown in Brazil. Journal of Food Composition and Analysis 20: 553558.CrossRefGoogle Scholar
Carvalho, PER (2003) Espécies Arbóreas Brasileiras. Colombo, Brasília: Embrapa Informação tecnológica; Colombo: Embrapa Florestas. pp. 455467.Google Scholar
Casagrande Junior, JG, Bianchi, VJ, Strelow, EZ, Bacarin, MA and Fachinello, JC (1999) Influência do sombreamento sobre os teores de carboidratos e fenóis em estacas semilenhosas de araçazeiro. Pesquisa Agropecuária Brasileira 34: 22192223.CrossRefGoogle Scholar
Chaves, N, Santiago, A and Alías, JC (2020) Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used. Antioxidants 9: 76.CrossRefGoogle Scholar
Chiesa, L, Schlabitz, C and Souza, CFV (2012) Efeito da adição de erva-mate nas características sensoriais e físico-químicas de barras de cereais. Revista do Instituto Adolfo Lutz 71: 105110.Google Scholar
Croge, CP, Cuquel, FL and Pintro, PTM (2020) Yerba mate: cultivation systems, processing and chemical composition. A review. Scientia Agricola 78: 111.Google Scholar
Dartora, N, Souza, LM, Paiva, SMM, Scoparo, CT, Iacomini, M, Gorin, PAJ, Rattmann, YD and Sassaki, GL (2013) Ramnogalacturonano de Ilex paraguariensis: um potencial adjuvante em sepsia tratamento. Carbohydrate Polymers 92: 17761782.CrossRefGoogle Scholar
Duarte, MM, Tomasi, JC, Helm, CV, Amano, E, Lazzarotto, M, Godoy, RCB and Wendling, I (2020) Caffeinated and decaffeinated mate tea: effect of toasting on bioactive compounds and consumer acceptance. Brazilian Journal of Agricultural Sciences 15: 110.Google Scholar
Fachinello, JC, Hoffmann, A and Nachtigal, JC (2005) Formas de propagação de plantas frutíferas. Propagação de Plantas Frutíferas. Brasília, Embrapa Informação Tecnológica 45–56.Google Scholar
Food and Agriculture Organization (FAO) (2020) Food and agriculture data. Available at http://www.fao.org/faostat/en/#data/QC, [accessed 16 October 2020].Google Scholar
Gomes, EN, Machado, MP, Miola, J and Deschamps, C (2018) Leaf area and intermittent misting on hop plants propagation by stem cuttings. Revista Colombiana de Ciencias Hortícolas 12: 508513.CrossRefGoogle Scholar
Hartmann, HT, Kester, DE, Davies Junior, FT and Geneve, RL (2011) Plant Propagation: Principles and Practices, 9th edn. Boston: Prentice-Hall.Google Scholar
Heck, CI and Mejia, EG (2007) Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. Journal of Food Science 72: 138151.CrossRefGoogle ScholarPubMed
Isolabella, S, Cogoi, L, López, P, Anesini, C, Ferraro, G and Filip, R (2010) Estudo da variação de compostos bioativos durante o processamento da erva-mate (Ilex paraguariensis). Food Chemistry 122: 695699.CrossRefGoogle Scholar
Lima, DM, Biasi, LA, Zanette, F, Zuffellato-Ribas, KC, Bona, C and Mayer, JLS (2011) Capacidade de enraizamento de estacas de Maytenus muelleri Schwacke com a aplicação de ácido indol butírico relacionada aos aspectos anatômicos. Revista Brasileira de Plantas Medicinais 13: 422438.CrossRefGoogle Scholar
Mareček, V, Mikyška, A, Hampel, D, Čejka, P, Neuwirthová, J, Malachová, A and Cerkal, R (2017) ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science 73: 4045.CrossRefGoogle Scholar
Martin, JGP, Porto, E, Alencar, SM, Glória, EM, Corrêa, CB and Cabral, ISR (2013) Atividade antimicrobiana de erva-mate (Ilex paraguariensis St. Hil.) contra patógenos alimentarios. Revista Argentina de Microbiología 45: 9398.CrossRefGoogle Scholar
Mayer, L, Nienow, AA and Tres, L (2020) Cutting propagation of ‘Cambona 4’ yerba mate clones. Comunicata Scientiae 11: 32873287.CrossRefGoogle Scholar
Musacchi, S (1994) Aspetti biochimici della disaffinità d'innesto. Rivista di frutticoltura e di ortofloricoltura 56: 7379.Google Scholar
Navroski, MC, Nicoletti, MF, Lovatel, QC, Pereira, MO, Tonett, EL, Mazzo, MV, Meneguzzi, A and Felippe, D (2016) Efeito do volume do tubete e doses de fertilizantes no crescimento inicial de mudas de Eucalyptus dunnii Maiden. Agrarian 9: 2633.Google Scholar
Pimentel, N, Lencina, KH, Pedroso, MF, Somavilla, TM and Bisognin, DA (2017) Morphophysiological quality of yerba mate plantlets produced by mini-cuttings. Semina: Ciências Agrárias 38: 35153528.Google Scholar
Pimentel, N, Lencina, KH, Kielse, P, Rodrigues, MB, Somalia, TM and Bisognin, DA (2019) Produtividade de minicepas e enraizamento de miniestacas de clones de erva-mate (Ilex paraguariensis A. St.-Hil.). Ciência Florestal 29: 559570.CrossRefGoogle Scholar
Pimentel, N, Pedroso, MF, Lencina, KH, Oliveira, JMSD and Bisognin, DA (2020) Anatomical characterization of the adventitious roots of mate (Ilex paraguariensis A. St.-Hil.) mini-cuttings. Brazilian Archives of Biology and Technology 63: 113.CrossRefGoogle Scholar
Re, R, Pellegrini, N, Proteggente, A, Pannala, A, Yang, M and Rice-Evans, C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 12311237.CrossRefGoogle ScholarPubMed
Reichert, CL, Friedrich, JC, Cassol, GH, Pensin, CF, Mitsui, ML, Donaduzzi, CM and Cardozo Junior, EL (2013) Chemical stability and dissolution study of mate (Ilex paraguariensis St. Hil.) extract and some formulations. International Journal of Pharmaceutical Science and Technology 8: 3349.Google Scholar
, FP, Portes, DC, Wendling, I and Zuffellato-Ribas, KC (2018) Miniestaquia de erva-mate em quatro épocas do ano. Ciência Florestal 28: 14311442.CrossRefGoogle Scholar
Santin, D, Benedetti, EL, Brondani, GE, Reissmann, CB, Orrutéa, AG and Roveda, LF (2008) Crescimento de mudas de erva-mate fertilizadas com N, P e K. Scientia Agraria 9: 5966.CrossRefGoogle Scholar
Santin, D, Benedetti, EL, Barros, NF, Fontes, LL, Almeida, IC, Neves, JCL and Wendling, I (2017) Manejo de colheita e adubação fosfatada na cultura da erva-mate (Ilex paraguariensis) em fase de produção. Ciência Florestal 27: 783797.CrossRefGoogle Scholar
Singleton, V and Rossi, JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144158.Google Scholar
Souza, RAM, Oldoni, TLC, Cabral, ISR and Alencar, SM (2011) Compostos fenólicos totais e atividade antioxidante de chás comercializados no Brasil. Boletim do Centro de Pesquisa e Processamento de Alimentos 29: 229236.Google Scholar
Stuepp, CA, Bitencourt, J, Wendling, I, Koehler, HS and Zuffellato-Ribas, KC (2017) Age of stock plants, seasons and IBA effect on vegetative, propagation of Ilex paraguariensis. Revista Árvore 41: 2.Google Scholar
Tamura, A, Sasaki, M, Yamashita, H, Matsui-Yuasa, I, Saku, T, Hikima, T, Tabuchi, M, Munakata, H and Kojima-Yuasa, A (2013) Yerba-mate (Ilex paraguariensis) extract prevents ethanol-induced liver injury in rats. Journal of Functional Foods 5: 17141723.CrossRefGoogle Scholar
Tarragó, J, Sansberro, P, Filip, R, López, P, González, A, Luna, C and Mroginski, L (2005) Effect of leaf retention and flavonoids on rooting of Ilex paraguariensis cuttings. Scientia Horticulturae 103: 479488.CrossRefGoogle Scholar
Tarragó, J, Filip, R, Mroginski, L and Sansberro, P (2012) Influence of the irradiance on phenols content and rooting of Ilex paraguariensis cuttings collected from adult plants. Acta Physiologiae Plantarum 34: 24192424.CrossRefGoogle Scholar
Tomasi, JC (2020) Bioactive compounds of yerba mate according to genotype, nitrogen fertigation and drying methods and acceptance of mate tea by consumers. Doctoral Thesis, Universidade Federal do Paraná, Brazil.Google Scholar
Tsakaldimi, M, Ganatsas, P and Jacobs, DF (2013) Prediction of planted seedling survival of five Mediterranean species based on initial seedling morphology. New Forests 44: 327339.CrossRefGoogle Scholar
Verma, N and Shukla, S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants 2: 105113.CrossRefGoogle Scholar
Wendling, I and Santin, D (2015) Propagação e nutrição de erva-mate. Brasília: Embrapa.Google Scholar
Wendling, I, Dutra, LF and Grossi, F (2007) Produção e sobrevivência de miniestacas e minicepas de erva-mate cultivadas em sistema semi-hidropônico. Pesquisa Agropecuária Brasileira 42: 289292.CrossRefGoogle Scholar
Wendling, I, Santin, D, Nagaoka, R and Sturion, J (2017) BRS BLD Aupaba e BRS BLD Yari: cultivares clonais de erva-mate para produção de massa foliar de sabor suave. Embrapa Florestas-Comunicado Técnico (INFOTECA-E) December: 411.Google Scholar
Yim, HS, Chye, FY, Rao, V, Low, JY, Matanjun, P, How, SE and Ho, CW (2013) Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology. Journal of Food Science and Technology 50: 275283.CrossRefGoogle ScholarPubMed
Zhao, H, Fan, W, Dong, J, Lu, J, Chen, J, Shan, L and Kong, W (2008) Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chemistry 107: 296304.CrossRefGoogle Scholar