Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T04:59:32.828Z Has data issue: false hasContentIssue false

Genetic diversity of quinoa (Chenopodium quinoa Willd.) from Cundinamarca, Colombia

Published online by Cambridge University Press:  06 March 2023

Ana Cruz Morillo-Coronado*
Affiliation:
Facultad de Ciencias Agropecuarias, Programa Ingeniería Agronómica, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte N°39-115, CP 150001, Boyacá, Tunja, Colombia
Elsa Helena Manjarres-Hernández
Affiliation:
Doctorado en Ciencias Biológicas y Ambientales, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte N°39-115, CP 150001, Boyacá, Tunja, Colombia
María Camila Pedreros-Benavides
Affiliation:
Grupo de investigación Competitividad, Innovación y Desarrollo Empresarial (CIDE), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte N° 39-115, CP 150001, Boyacá, Tunja, Colombia
*
Author for correspondence: Ana Cruz Morillo-Coronado, E-mail: ana.morillo@uptc.edu.co

Abstract

Chenopodium quinoa W. is a species of South America with an exceptional nutritional content and wide agroclimatological adaptation. It has great genetic and phenotypic variability, however in Colombia there are few genetic improvement programmes that take advantage of its great genetic and productive potential. In Cundinamarca there are some adapted genotypes which have been selected by farmers. We evaluated 36 genotypes of Blanca de Jericó, Blanca Subachoque, Aurora, Púrpura and Tunkahuan from Cundinamarca, using eight ISSR markers. The analysis by the coefficient of Nei-Li at the level of similarity of 0.40 divided the population into three groups according their background genetic and the colour of oxalates. The percentage of polymorphic loci was higher than 90%. The average value of heterozygosity was 0.32, which is low given the selection processes that the evaluated germplasm has undergone. We found moderate genetic differentiation (Fst = 0.23). The analysis of molecular variance (AMOVA) showed higher variation (77%) groups than among groups (23%). The results revealed intra-population diversity, which suggests that farmers within their farms should undergo a more rigorous seed selection process. Our results demonstrate that ISSR markers are useful and powerful to assess the genetic relationships, polymorphism and genetic diversity of quinoa cultivars. The genetic characterization results reported in the present study will be promising for guiding the breeding of quinoa seed quality in Colombia.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Naggar, AMM, El-Salam, RM, Badran, AEE and El-Moghazi, MA (2017) Molecular differentiation of five quinoa (Chenopodium quinoa Willd.) genotypes using Inter-simple Sequence Repeat (ISSR) markers. Biotechnology Journal International 20, 112.CrossRefGoogle Scholar
Bhargava, A, Shukla, S and Ohri, D (2007) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research 101, 104116.CrossRefGoogle Scholar
Dellaporta, SL, Wood, J and Hicks, JB (1983) A plant DNA minipreparation: version II. Plant Molecular Biology Reporter 1, 1921.CrossRefGoogle Scholar
Earl, D and VonHoldt, B (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359361.CrossRefGoogle Scholar
El-Harty, E, Ghazy, A, Alateeq, T, Al-Faifi, SA, Khan, MA, Afzal, M, Alghamdi, SS and Migdadi, H (2021) Morphological and molecular characterization of quinoa genotypes. Agriculture 11, 286.CrossRefGoogle Scholar
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.CrossRefGoogle ScholarPubMed
Fuentes, F, Bazile, D, Bhargava, A and Martinez, EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. The Journal of Agricultural Sciencie 150, 702716.Google Scholar
Galindo, R, Pont, L, Saenz-Nebot, V and Benavente, F (2021) Classification of quinoa varieties based on protein fingerprinting by capillary electrophoresis with ultraviolet absorption diode array detection and advanced chemometrics. Food Chemistry 341, 19.Google Scholar
García, M, Zurita, A, Stechauner, R, Roa, D and Jacobsen, S (2020) Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: a Colombian perspective. Chilean Journal of Agricultural Research 80, 290302.CrossRefGoogle Scholar
Hubisz, M, Falush, D, Stephens, M and Pritchard, J (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9, 13221332.CrossRefGoogle ScholarPubMed
Iftikhar, A, Abbas, G, Saqib, M, Shabbir, A, Amjad, M, Shahid, M, Ahmad, I, Iqbal, S and Ahmad, S (2021) Salinty modulates lead (Pb) tolerance and phytoremediation potential of quinoa: a multivariate comparison of physiological and biochemical attributes. Environmental Geochemistry and Health 1, 116.Google Scholar
Jaikishun, S, Li, W, Yang, Z and Song, S (2019) Quinoa: in perspective of global challenges. Agronomy 9, 115.CrossRefGoogle Scholar
Laosatit, K, Taytragool, S, Pimsaythong, K, Somta, P and Tanadul, O (2021) Genetic diversity of quinoa (Chenopodium quinoa Willd.) germplasm as revealed by sequence-related amplified polymorphism markers. Agriculture and Natural Resources 55, 341348.Google Scholar
Manjarres, E, Morillo, A, Ojeda, Z, Cárdenas, A and Arias, D (2021 a) Characterization of the yield components and selection of materials for breeding programs of quinoa (Chenopodium quinoa Willd.). Euphytica 217, 101115.CrossRefGoogle Scholar
Manjarres, E, Arias, D, Morillo, A, Ojeda, Z and Cárdenas, A (2021 b) Phenotypic characterization of quinoa (Chenopodium quinoa Willd.) for the selection of promising materials for breeding programs. Plants 10, 116.Google Scholar
Melini, V and Melini, F (2021) Functional components and anti-nutritional factors in gluten-free grains: a focus on quinoa seeds. Foods 10, 351377.10.3390/foods10020351CrossRefGoogle ScholarPubMed
Morillo, AC, Manjarres, EH and Morillo, Y (2017) Molecular characterization of Chenopodium quinoa Willd. Using inter-simple sequence repeat (ISSR) markers. African Journal of Biotechnology 16, 483489.Google Scholar
Morillo, AC, Manjarres, EH, Reyes, L and Morillo, Y (2020 a) Intrapopulation phenotypic variation in Piartal (Chenopodium quinoa Willd.) from the department of Boyacá, Colombia. African Journal of Agricultural Research 16, 11951203.Google Scholar
Morillo, AC, Manjarres, EH, Reyes, L and Morillo, Y (2020 b) Molecualr characterization of intrapopulation genetic diversity in Chenopodium quinoa (Chenopodiaceae). Genetic Molecualr Research 19, 113.Google Scholar
Muñoz, JE, Morillo, A and Morillo, Y (2008) Random Amplied Microsatellite (RAMs) in studies of plant genetic diversity. Acta Agronómica 57, 219226.Google Scholar
Nei, M and Li, WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76, 52695273.CrossRefGoogle ScholarPubMed
Noulas, C, Tziouvalekas, M, Vlachostergios, D, Baxevanos, D, Karyotis, T and Iliadis, C (2017) Adaptation, agronomic potential, and current perspectives of quinoa under Mediterranean conditions: case studies from the lowlands of central Greece. Communications in Soil Science and Plant Analysis 48, 26122629.Google Scholar
Ott, J (1992) Strategies for characterizing highly polymorphic markers in human gene mapping. American Journal of Human Genetics 51, 283290.Google ScholarPubMed
Platten, J, Cobb, J and Zantua, RE (2019) Criteria for evaluating molecular markers: comprehensive quality metrics to improve marker-assisted selection. PloS ONE 14, 120.CrossRefGoogle ScholarPubMed
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Romero, M, Mujica, A, Pineda, E, Ccamapaza, Y and Zavalla, N (2019) Genetic identity based on simple sequence repeat (Ssr) markers for quinoa (Chenopodium quinoa Willd.). Ciencia e Investigacion Agraria 46, 166178.CrossRefGoogle Scholar
Saad-Allah, k and Youssef, M (2018) Phytochemical and genetic characterization of five quino (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants 24, 617629.CrossRefGoogle Scholar
Salazar, J, De Lourdes Torres, M, Gutierrez, B and Torres, AF (2019) Molecular characterization of Ecuadorian quinoa (Chenopodium quinoa Willd.) diversity: implications for conservation and breeding. Euphytica 215, 6071.CrossRefGoogle Scholar
Schepers, A, Pavese, N, Buerstmayr, H and Dohm, J (2021) Quinoa genome assembly employing genomic variation for guided scaffolding. Theoretical and Applied Genetics 134, 35773594.CrossRefGoogle Scholar
Schmockel, SM, Lightfoot, DJ, Razali, R, Tester, M and Jarvis, DE (2017) Identification of putative involved in tolerance in Chenopodium quinoa by integrating physiological data, RNA seq, and SNP Analyses. Frontiers Plant Science 8, 1023.CrossRefGoogle Scholar
Shahrajabian, MH, Sun, W and Cheng, Q (2021) Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genetic Resources and Crop Evolution 68, 17091730.CrossRefGoogle Scholar
Shen, Y, Tang, X and Li, Y (2021) Drying methods affect physicochemical and funtional properties of quinoa protein isolate. Food Chemistry 339, 19.CrossRefGoogle Scholar
Wang, MX, Wu, XT, Zou, JW, Zhang, J, Wang, XY, Chang, X, Song, WN and Nie, XJ (2019) Genome-wide microsatellite characterisation and marker development in Chenopodium quinoa. Annals of Applied Biology 175, 415423.CrossRefGoogle Scholar
Wright, S (1978) Evolution and the Genetics of Populations, Variability Within and among Natural Populations, vol. 4. Chicago: University of Chicago Press.Google Scholar
Yasui, Y, Hirakawa, H, Oikawa, t, Toyoshima, M, Matsuzaki, C, Ueno, M, Mizuno, N, Nagatoshi, Y, Imamura, T, Miyago, M, Tanaka, k, Mise, K, Tanaka, T, Mizukoshi, H, Mori, M and Fujita, Y (2016) Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Research 23, 535546.CrossRefGoogle ScholarPubMed
Zhang, T, Gu, M, Liu, Y, Lv, Y, Zhou, L, Lu, H, Liang, S, Bao, H and Zhao, H (2017) Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole–genome re-sequencing. BMC Genomics 18, 685.CrossRefGoogle ScholarPubMed
Supplementary material: File

Morillo-Coronado et al. supplementary material

Morillo-Coronado et al. supplementary material

Download Morillo-Coronado et al. supplementary material(File)
File 498.1 KB