Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T15:37:31.845Z Has data issue: false hasContentIssue false

Introgression of the coupled Fhb1-Sr2 to increase Fusarium head blight and stem rust resistance of elite wheat cultivars

Published online by Cambridge University Press:  24 May 2022

M. Raffo
Affiliation:
Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50 km 11.500, CP 70006 Colonia, Uruguay
G. Azzimonti
Affiliation:
Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50 km 11.500, CP 70006 Colonia, Uruguay
S. Pereyra
Affiliation:
Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50 km 11.500, CP 70006 Colonia, Uruguay
C. Pritsch
Affiliation:
Facultad de Agronomía, Universidad de la República, Garzón 780, CP 12900 Montevideo, Uruguay
B. Lado
Affiliation:
Facultad de Agronomía, Universidad de la República, Garzón 780, CP 12900 Montevideo, Uruguay
S. Dreisigacker
Affiliation:
International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, DF, Mexico
M. Quincke
Affiliation:
Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50 km 11.500, CP 70006 Colonia, Uruguay
A. Castro
Affiliation:
Facultad de Agronomía, Universidad de la República, Garzón 780, CP 12900 Montevideo, Uruguay
P. Silva
Affiliation:
Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50 km 11.500, CP 70006 Colonia, Uruguay
R. García
Affiliation:
Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50 km 11.500, CP 70006 Colonia, Uruguay
F. Pereira
Affiliation:
Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50 km 11.500, CP 70006 Colonia, Uruguay
S. Germán*
Affiliation:
Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50 km 11.500, CP 70006 Colonia, Uruguay
*
Author for correspondence: S. Germán, E-mail: sgerman@inia.org.uy

Abstract

Fusarium head blight (FHB) and stem rust (SR) threaten the sustainability of wheat production worldwide. Fhb1 and Sr2 confer partial durable resistance to FHB and SR, respectively. Despite resistant alleles of both genes are linked in repulsion, lines with Fhb1-Sr2 in coupling were developed at the University of Minnesota, USA. Marker-assisted backcrossing was used to incorporate the coupled Fhb1-Sr2 into four elite INIA-Uruguay spring wheat varieties lacking both genes and expressing different levels of FHB and SR resistance. In each case, the initial cross between the donor line and recurrent parent was backcrossed three times. Genotypes carrying Fhb1-Sr2 were selected using the molecular marker UMN10. In BC3F3 families, retention of Fhb1-Sr2 was further confirmed with the markers SNP3BS-8 and Sr2-ger9 for Fhb1 and Sr2, respectively. BC3F3 homozygous lines contrasting at UMN10, SNP3BS-8 and Sr2-ger9 were obtained to quantify the effect of Fhb1-Sr2 on the resistance to FHB under controlled conditions and to SR under field conditions. After 26 months period, successful introgression of Fhb1-Sr2 into the four cultivars was achieved, representing novel wheat genetic resources. Lines homozygous for the resistant alleles of Fhb1 were significantly more resistant to FHB as reflected by an 18% reduction of average FHB area under the disease progress curve. A significant effect of Sr2 on SR field resistance was observed in lines derived from the most susceptible cultivar ‘Génesis 2375’. The most resistant lines to both diseases are expected to be valuable genetic resources in breeding for durable resistance to FHB and SR.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, JA, Stack, RW, Liu, S, Waldron, BL, Fjeld, AD, Coyne, C, Moreno-Sevilla, B, Mitchell Fetch, J, Song, QJ, Cregan, PB and Frohberg, RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theoretical and Applied Genetics 102, 11641168.CrossRefGoogle Scholar
Bansal, U, Bariana, H, Wong, D, Randhawa, M, Wicker, T, Hayden, M and Keller, B (2014) Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar ‘Arina’. Theoretical and Applied Genetics 127, 14411448.CrossRefGoogle Scholar
Bernardo, AN, Ma, H, Zhang, D and Bai, G (2012) Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Molecular Breeding 29, 477488.10.1007/s11032-011-9565-yCrossRefGoogle Scholar
Box, GE and Cox, DR (1964) An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological) 26, 211243.Google Scholar
Brar, GS, Pozniak, CJ, Kutcher, HR and Hucl, PJ (2019) Evaluation of Fusarium head blight resistance genes Fhb1, Fhb2, and Fhb5 introgressed into elite Canadian hard red spring wheats: effect on agronomic and end-use quality traits and implications for breeding. Molecular Breeding 39, 44.CrossRefGoogle Scholar
Buerstmayr, H, Lemmens, M, Hartl, L, Doldi, L, Steiner, B, Stierschneider, M and Ruckenbauer, P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theoretical and Applied Genetics 104, 8491.CrossRefGoogle Scholar
Buerstmayr, H, Ban, T and Anderson, JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128, 126.CrossRefGoogle Scholar
Campbell, CL and Madden, LV (1990) Introduction to Plant Disease Epidemiology. New York: John Wiley and Sons.Google Scholar
Campos, P, Castro, M, Pereyra, S, Quincke, M, Milisich, H, Gieco, L, López, J and Germán, SE (2015) Re-emergence of stem rust at epidemic levels in Argentina and Uruguay in (2014). In McIntosh, RA (ed.), Proceedings 2015 Technical Workshop Borlaug Global Rust Initiative. Sydney, Australia. Available at https://www.cabdirect.org/cabdirect/FullTextPDF/2017/20173038268.pdf (Accessed 10 January 2018).Google Scholar
Castro, M, Germán, SE and Pereyra, SA (2015) Caracterización sanitaria de cultivares de trigo y cebada. Available at http://www.inia.uy/Documentos/Privados/INIA%20La%20Estanzuela/caracterizaci%C3%B3n_sanitaria_cultivares_trigo_cebada.pdf (Accessed 12 January 2018).Google Scholar
Castro, M, Germán, SE and Pereyra, SA (2019) Caracterización sanitaria de cultivares de trigo y cebada. Available at http://www.inia.uy/Documentos/P%C3%BAblicos/INIA%20La%20Estanzuela/Actividades%202019/caracterizaci%C3%B3n%20sanitaria%202018%2023%20abril.pdf (Accessed 10 March 2019).Google Scholar
Dawkins, R and Krebs, JR (1979) Arms races between and within species. Proceedings of the Royal Society of London. Series B. Biological Sciences 205, 489511.Google ScholarPubMed
Desjardins, AE (2006) Fusarium mycotoxins. Chemistry, Genetics, and Biology, Vol. 531. St. Paul, MN: American Phytopathological Society (APS) press.Google Scholar
Doyle, JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 1115.Google Scholar
Dreisigacker, S, Sehgal, D, Reyes Jaimez, AE, Luna Garrido, B, Muñoz Zavala, S, Núñez Ríos, C, Mollins, J and Mall, S (eds) (2016) CIMMYT Wheat Molecular Genetics: Laboratory Protocols and Applications to Wheat Breeding. Mexico, DF: CIMMYT, pp. 1437.Google Scholar
Ellis, MH, Bonnett, DG and Rebetzke, GJ (2007) A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica 157, 209214.CrossRefGoogle Scholar
Hao, Y, Rasheed, A, Zhu, Z, Wulff, BB and He, Z (2020) Harnessing wheat Fhb1 for Fusarium resistance. Trends in Plant Science 25, 13.CrossRefGoogle ScholarPubMed
He, X, Bonnett, D, Singh, PK, Hyles, J, Spielmeyer, W and Dreisigacker, S (2015) Advanced wheat breeding lines combining Fhb1 and Sr2 in different genetic backgrounds. Proceedings of the 9th International Wheat Conference, Sydney, Australia, pp. 2025.Google Scholar
He, X, Brar, GS, Bonnett, D, Dreisigacker, S, Hyles, J, Speilmeyer, W, Bhavani, S, Singh, RP and Singh, PK (2020) Disease resistance evaluation of elite CIMMYT wheat lines containing the coupled Fhb1 and Sr2 genes. Plant Disease 104, 23692376.CrossRefGoogle ScholarPubMed
Herrera-Foessel, SA, Singh, RP, Lillemo, M, Huerta-Espino, J, Bhavani, S, Singh, S, Lan, C, Calvo-Salazar, V and Lagudah, ES (2014) Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics 127, 781789.CrossRefGoogle ScholarPubMed
Jin, Y, Szabo, LJ, Pretorius, ZA, Singh, RP, Ward, R and Fetch, T Jr (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Disease 92, 923926.CrossRefGoogle ScholarPubMed
Jin, F, Zhang, D, Bockus, W, Baenziger P, S, Carver, B and Bai, G (2013) Fusarium head blight resistance in US winter wheat cultivars and elite breeding lines. Crop Science 53, 20062013.CrossRefGoogle Scholar
Li, G, Zhou, J, Jia, H, Gao, , Fan, M, Luo, Y, Zhao, P, Xue, S, Li, N, Yuan, Y, Ma, S, Kong, Z, Jia, L, An, X, Jiang, G, Liu, W, Cao, W, Zhang, R, Fan, J, Xu, X, Liu, Y, Kong, Q, Zheng, S, Wang, Y, Qin, B, Cao, S, Ding, Y, Shi, J, Yan, H, Wang, X, Ran, C and Ma, Z (2019) Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics 51, 11061112. doi: https://doi.org/10.1038/s41588-019-0426-7CrossRefGoogle ScholarPubMed
Liu, S and Anderson, JA (2003) Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Science 43, 760766.CrossRefGoogle Scholar
Liu, S, Zhang, X, Pumphrey, MO, Stack, RW, Gill, BS and Anderson, JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Functional and Integrative Genomics 6, 8389.CrossRefGoogle Scholar
Liu, S, Pumphrey, M, Gill, B, Trick, H, Zhang, J, Dolezel, J, Chalhoub, B and Anderson, J (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Research Communications 36(Supplement 6), 195201.CrossRefGoogle Scholar
Mago, R, Brown-Guedira, G, Dreisigacker, S, Breen, J, Jin, Y, Singh, R, Appels, R, Lagudah, ES, Ellis, J and Spielmeyer, W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theoretical and Applied Genetics 122, 735744.CrossRefGoogle ScholarPubMed
McIntosh, RA, Dubcovsky, J, Rogers, WJ, Morris, C, Appels, R and Xia, XC (2017) Catalogue of gene symbols for wheat: 2017. Annual Wheat Newsletter 53, 120.Google Scholar
McMullen, MP, Bergstrom, GC, De Wolf, E, Dill-Macky, R, Hershman, DE, Shaner, G and Van Sanford, DA (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease 96, 17121728.CrossRefGoogle ScholarPubMed
Mesterházy, Á, Bartók, T, Mirocha, CG and Komoroczy, R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding 118, 97110.CrossRefGoogle Scholar
Miedaner, T, Wilde, F, Steiner, B, Buerstmayr, H, Korzun, V and Ebmeyer, E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theoretical and Applied Genetics 112, 562569.CrossRefGoogle Scholar
Niwa, S, Kubo, K, Lewis, J, Kikuchi, R, Alagu, M and Ban, T (2014) Variations for Fusarium head blight resistance associated with genomic diversity in different sources of the resistant wheat cultivar ‘Sumai 3’. Breeding Science 64, 9096.CrossRefGoogle ScholarPubMed
Pereyra, S and Lori, GA (2013) Crop residues and their management in the epidemiology of Fusarium head blight. In Alconada, MT and Chulze, S (eds), Fusarium Head Blight in Latin America. Dordrecht: Springer, pp. 143156.10.1007/978-94-007-7091-1_9CrossRefGoogle Scholar
Peterson, RF, Campbell, AB and Hannah, AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research 26, 496500.CrossRefGoogle Scholar
Petronaitis, T, Simpfendorfer, S and Hüberli, D (2021) Importance of Fusarium spp. in wheat to food security: a global perspective. In Scott, P, Strange, R, Korsten, L and Gullino, M (eds), Plant Diseases and Food Security in the 21st Century. Switzerland: Springer, pp. 127159.CrossRefGoogle Scholar
Pretorius, ZA, Singh, RP, Wagoire, WW and Payne, TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Disease 84, 203203.CrossRefGoogle ScholarPubMed
Pumphrey, MO, Bernardo, R and Anderson, JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Science 47, 200206.CrossRefGoogle Scholar
Rawat, N, Pumphrey, MO, Liu, S, Zhang, X, Tiwari, VK, Ando, K, Trick, H, Bockus, W, Akhunov, E, Anderson, J and Gill, BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nature Genetics 48, 15761580.CrossRefGoogle Scholar
R Core Team (2016) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/ (Accessed 4 January 2019).Google Scholar
Röder, MS, Korzun, V, Wendehake, K, Plaschke, J, Tixier, MH, Leroy, P and Ganal, MW (1998) A microsatellite map of wheat. Genetics 149, 20072023.CrossRefGoogle ScholarPubMed
Roelfs, AP, Singh, RP and Saari, EE (1992) Las royas del trigo: Conceptos y métodos para el manejo de esas enfermedades. México: Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), p. 81.Google Scholar
Salameh, A, Buerstmayr, M, Steiner, B, Neumayer, A, Lemmens, M and Buerstmayr, H (2011) Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits. Molecular Breeding 28, 485494.CrossRefGoogle Scholar
Shapiro, S and MB, Wilk (1965) An analysis of variance test for normality (complete samples). Biometrika 52, 591611.CrossRefGoogle Scholar
Sharma, RK, Singh, PK, Joshi, AK, Bhardwaj, SC, Bains, NS and Singh, S (2013) Protecting South Asian wheat production from stem rust (Ug99) epidemic. Journal of Phytopathology 161, 299307.CrossRefGoogle Scholar
Singh, RP (2012) Pros and cons of utilizing major, race-specific resistance genes versus partial resistance in breeding rust resistant wheat. Proceedings, Borlaug Global Rust Initiative, 2012 Technical Workshop, September 1–4, Beijing, China: Oral presentations, pp. 57–65. Borlaug Global Rust Initiative.Google Scholar
Singh, RP, Ma, H and Rajaram, S (1995) Genetic analysis of resistance to scab in spring wheat cultivar Frontana. Plant Disease 79, 238240.CrossRefGoogle Scholar
Singh, RP, Hodson, DP, Jin, Y, Huerta-Espino, J, Kinyua, MG, Wanyera, R, Njau, P and Ward, RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1, 113.Google Scholar
Singh, RP, Hodson, DP, Huerta-Espino, J, Jin, Y, Njau, P, Wanyera, R, Herrera-Foessel, S and Ward, RW (2008) Will stem rust destroy the world's wheat crop? Advances in Agronomy 98, 271309.CrossRefGoogle Scholar
Singh, S, Singh, RP, Bhavani, S, Huerta-Espino, J and Eugenio, LVE (2013) QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population. Theoretical and Applied Genetics 126, 13671375.CrossRefGoogle ScholarPubMed
Singh, RP, Hodson, DP, Jin, Y, Lagudah, ES, Ayliffe, MA, Bhavani, S and Basnet, BR (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105, 872884.CrossRefGoogle ScholarPubMed
Stack, R (2003) History of Fusarium head blight with emphasis on North America. In Leonard, KJ and Bushnell, WR (eds), Fusarium Head Blight of Wheat and Barley. St. Paul, MN: American Phytopathological Society Press, pp. 134.Google Scholar
Stubbs, RW, Prescott, JM, Saari, EE and Dubin, HJ (1986) Manual de Metodología Sobre las Enfermedades e los Cereales. México: Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT).Google Scholar
Su, Z, Bernardo, A, Tian, B, Chen, H, Wang, S, Ma, H, Cai, S, Liu, D, Zhang, D, Li, T, Trick, H, Amand, P, Yu, J, Zhang, Z and Bai, G (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics 51, 10991105.CrossRefGoogle ScholarPubMed
Tukey, J (1949) Comparing individual means in the analysis of variance. Biometrics 5, 99114.CrossRefGoogle ScholarPubMed
van Eeuwijk, FV, Mesterházy, A, Kling, CI, Ruckenbauer, P, Saur, L, Buerstmayr, H, Lemmens, M, Keizer, LCP, Maurin, N and Snijders, CHA (1995) Assessing non-specificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum and F. nivale using a multiplicative model for interaction. Theoretical and Applied Genetics 90, 221228.CrossRefGoogle Scholar
Waldron, BL, Moreno-Sevilla, B, Anderson, JA, Stack, RW and Frohberg, RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Science 39, 805811.CrossRefGoogle Scholar
Wanyera, R, Kinyua, MG, Jin, Y and Singh, RP (2006) The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in Eastern Africa. Plant Disease 90, 113113.CrossRefGoogle ScholarPubMed
Yang, ZP, Gilbert, J, Somers, DJ, Fedak, G, Procunier, JD and McKenzie, IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Molecular Breeding 12, 309317.CrossRefGoogle Scholar
Zadoks, JC, Chang, TT and Konzak, CF (1974) A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zhang, H, Van der Lee, T, Waalwijk, C, Chen, W, Xu, J, Xu, J, Zhang, Y and Feng, J (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One 7, e31722.CrossRefGoogle ScholarPubMed
Zhang, X, Rouse, MN, Nava, IC, Jin, Y and Anderson, JA (2016) Development and verification of wheat germplasm containing both Sr2 and Fhb1. Molecular Breeding 36, 85.CrossRefGoogle Scholar
Zhou, W, Kolb, FL, Bai, G, Shaner, G and Domier, LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45, 719727.CrossRefGoogle ScholarPubMed
Supplementary material: File

Raffo et al. supplementary material

Tables S1-S2

Download Raffo et al. supplementary material(File)
File 15.2 KB