Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T21:13:58.562Z Has data issue: false hasContentIssue false

Latest developments in microtomography and nanotomography at PETRA III

Published online by Cambridge University Press:  29 February 2012

A. Haibel*
Affiliation:
GKSS Research Centre Geesthacht, Geesthacht, Germany
F. Beckmann
Affiliation:
GKSS Research Centre Geesthacht, Geesthacht, Germany
T. Dose
Affiliation:
GKSS Research Centre Geesthacht, Geesthacht, Germany
J. Herzen
Affiliation:
GKSS Research Centre Geesthacht, Geesthacht, Germany
M. Ogurreck
Affiliation:
GKSS Research Centre Geesthacht, Geesthacht, Germany
M. Müller
Affiliation:
GKSS Research Centre Geesthacht, Geesthacht, Germany
A. Schreyer
Affiliation:
GKSS Research Centre Geesthacht, Geesthacht, Germany
*
a)GKSS Research Centre Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht, Germany. Electronic mail: astrid.haibel@gkss.de

Abstract

Due to the extraordinary beam characteristics of the new PETRA III synchrotron, i.e., the high brilliance, the extremely low emittance of 1 nm rad, and the high fraction of coherent photons even in the hard X-ray range, the imaging beamline (IBL) at PETRA III will provide state of the art imaging and tomography capabilities with resolution well into the nanometer range. Novel applications of tomographic techniques allow for high speed in situ measurements as well as highest spatial and density resolutions. Additionally, the highly coherent beam enables the application of phase contrast methods in an exceptional way. Since the focus is on the energy range between 5 and 50 keV, the IBL will among others be ideally suited for microtomography and nanotomography on small engineering materials science samples as well as for studying soft matter, bones, medical implants, and biomatter.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckmann, F., Grupp, R., Haibel, A., Huppmann, M., Nöthe, M., Pyzalla, A., Reimers, W., Schreyer, A., and Zettler, R. (2007). “In situ synchrotron x-ray microtomography studies of microstructure and damage evolution in engineering materials,” Adv. Eng. Mater. AENMFY 9, 939950.10.1002/adem.200700254CrossRefGoogle Scholar
Berthold, A., Haibel, A., Brandes, N., Kroh, L., Gross, U., Uharek, L., and Schubert, H. (2007). “Biocompatible porous ceramics for the cultivation of hematopoietic cells,” J. Mater. Sci. Mater. Med. 18, 13331338.10.1007/s10856-006-0076-zCrossRefGoogle ScholarPubMed
Grigoriev, M., Shabelnikov, L., Yunkin, V., Snigirev, A., Snigireva, I., Di Michiel, M., Kuznetsov, S., Hoffmann, M., and Voges, E. (2001). “Planar parabolic lenses for focusing high energy X-rays,” Proc. SPIE PSISDG 4501, 185192.10.1117/12.448494CrossRefGoogle Scholar
Grupp, R., Henkel, F., Nöthe, M., Banhart, J., Kieback, B., and Haibel, A. (2009). “A 1800 K furnace designed for in situ synchrotron microtomography,” J. Synchrotron Radiat. JSYRES 16, 524527.10.1107/S0909049509020937CrossRefGoogle ScholarPubMed
Haibel, A., Rack, A., and Banhart, J. (2006). “Why are metal foams stable?Appl. Phys. Lett. APPLAB 89, 154102.10.1063/1.2357931CrossRefGoogle Scholar
Last, Saile A. (2009). “Refractive X-ray lenses produced by X-ray lithography,” Advanced Micro & Nanosystems, LIGA and Its Applications, edited by V., , Wallrabe, U., Tabata, O., and Korvink, J. G. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim), Vol. 7, pp. 233242.Google Scholar
Lengeler, Snigirev B., Schroer, C. G., Kuhlmann, M., Benner, B., Günzler, T. F., Kurapova, O., Zontone, F., Snigirev, A., and Snigireva, I. (2004). “Beryllium parabolic refractive x-ray lenses,” in Design and Microfabrication of Novel X-ray Optics II, Proceedings of the SPIE, edited by A. S., and Mancini, D. C. (SPIE, Bellingham), Vol. 5539, pp. 19.Google Scholar
Reimers, W., Pyzalla, A. R., Schreyer, A. K., and Clemens, H. (2007). Neutrons and Synchrotron Radiation in Engineering Materials Science (Wiley-VCH Verlag, Weinheim), pp. 287321.Google Scholar
Reznikova, E., Weitkamp, T., Nazmov, V., Last, A., Simon, M., and Saile, V. (2007). “Investigation of phase contrast hard X-ray microscopy using planar sets of refractive crossed linear parabolic lenses made from SU-8 polymer,” Phys. Status Solidi A PSSABA 204, 28112816.10.1002/pssa.200675690CrossRefGoogle Scholar
Schroer, Bonse C. G., Benner, B., Günzler, T. F., Kuhlmann, M., Patommel, J., Lengeler, B., Somogyi, A., Weitkamp, T., Rau, C., Snigirev, A., and Snigireva, I. (2004a). “Nanotomography using parabolic refractive x-ray lenses,” in Developments in X-ray Tomography IV, Proceedings of the SPIE, edited by U., (SPIE, Bellingham), Vol. 5535, pp. 701708.CrossRefGoogle Scholar
Schroer, C. G., Cloetens, P., Rivers, M., Snigirev, A., Takeuchi, A., and Yun, W. (2004b). “High resolution 3D imaging microscopy using hard x-rays,” MRS Bull. MRSBEA 29, 157165.CrossRefGoogle Scholar
Schroer, C. G. and Lengeler, B. (2005). “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. PRLTAO 94, 054802.10.1103/PhysRevLett.94.054802CrossRefGoogle ScholarPubMed
Snigirev, A., Kohn, V., Snigireva, I., and Lengeler, B. (1996). “A compound refractive lens for focusing high-energy X-rays,” Nature (London) NATUAS 384, 4951.10.1038/384049a0CrossRefGoogle Scholar
Snigirev, A., Kohn, V., Snigireva, I., Souvorov, A., and Lengeler, B. (1998). “Focusing high-energy x rays by compound refractive lenses,” Appl. Opt. APOPAI 37, 653662.10.1364/AO.37.000653CrossRefGoogle ScholarPubMed
Störmer, M., Häussler, D., Jäger, W., and Bormann, R. (2007). “Large X-ray optics: Fabrication and characterization of single and multilayer mirrors,” Sino-German High Level Expert Symposium on X-ray Optics, Optics and Precision Engineering, Vol. 15, pp. 18691877.Google Scholar
Störmer, M., Horstmann, C., Häussler, O., Spiecker, E., Siewert, F., Scholze, F., Hertlein, F., Jäger, W., and Bormann, R. (2008). “Mono- and multi-layer mirrors for current and next-generation light sources,” SPIE 7077 Session 1: Multilayers, p. 707705.Google Scholar
Störmer, M., Michaelsen, C., Wiesmann, J., Ricardo, P., and Bormann, R. (2006). The Dekker Encyclopedia of Nanoscience and Nanotechnology (Marcel Dekker, New York).Google Scholar
Zehbe, R., Haibel, A., and Schubert, H. (2006). “Anodic 2D and 3D immobilization of nano-sized alumina particles in a fibrin network,” Proceedings of the E-MRS Fall Meeting 2006, Warsaw, Poland, pp. 115116.Google Scholar