Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T08:12:18.206Z Has data issue: false hasContentIssue false

A powder diffraction study of MIBaIn2(PO4)3 (MI=Na, K, Cs) with a langbeinite-type structure

Published online by Cambridge University Press:  05 March 2012

D. Louër
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
V. Moise
Affiliation:
Laboratoire de Chimie Inorganique Structurale, Département de Chimie Générale, Université de Liège, 3 Allée de la Chimie, B6, Sart-Tilman, 4000 Liège, Belgium
M. Liégeois-Duyckaerts
Affiliation:
Laboratoire de Chimie Inorganique Structurale, Département de Chimie Générale, Université de Liège, 3 Allée de la Chimie, B6, Sart-Tilman, 4000 Liège, Belgium
A. Rulmont
Affiliation:
Laboratoire de Chimie Inorganique Structurale, Département de Chimie Générale, Université de Liège, 3 Allée de la Chimie, B6, Sart-Tilman, 4000 Liège, Belgium

Abstract

Three phosphates, MIBaIn2(PO4)3 with MI=Na, K, Cs, isostructural to the langbeinite structure, have been studied from powder diffraction data collected with monochromatic radiation obtained from a conventional X-ray source. Precise powder data are reported, as well as cell parameters, i.e., a=10.026 08(9) Å, a=10.121 57(13) Å and a=10.226 94(9) Å for MI=Na, K and Cs, respectively. A Rietveld refinement has been carried out (space group P213), with final RF factors, 0.061, 0.041 and 0.027, and Rwp factors, 0.196, 0.142 and 0.129, for MI=Na, K and Cs, respectively. There are two octahedrally coordinated In3+ ions in the asymmetric unit and the final refinements suggest disorder on the two sites of the MI/Ba sublattice.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Battle, P. D., Cheetham, A. K., Harrison, W. T. A., and Long, G. J. (1986). “The crystal structure and magnetic properties of the synthetic langbeinite KBaFe2(PO4)3,J. Solid State Chem. JSSCBI 62, 1625. jss, JSSCBI CrossRefGoogle Scholar
Battle, P. D., Gibb, T. C., and Nixon, S. (1988). “The magnetic properties of the synthetic langbeinite KBaCr2(PO4)3,J. Solid State Chem. JSSCBI 75, 2129. jss, JSSCBI CrossRefGoogle Scholar
Boultif, A., and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993. acr, JACGAR CrossRefGoogle Scholar
DeWolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR CrossRefGoogle Scholar
Guth, U., Löscher, B., Schmidt, P., Wulff, H., and Möbius, H.-H. (1992). “Structure and electrical conductivity of polycrystalline K2YZr(PO4)3,Solid State Ionics SSIOD3 51, 181185. ssi, SSIOD3 CrossRefGoogle Scholar
Louër, D. (1992). “Automatic indexing: procedures and applications,” in Accuracy in Powder Diffraction II, edited by E. Prince and J. K. Stalick, NIST Spec. Publ. No. 846 (U.S. Dept of Commerce, Gaithersburg, MA), pp. 92–104.Google Scholar
Louër, D. (2000). “Structure analysis from powder data,” in Industrial Applications of X-ray Diffraction, edited by F. H. Chung and D. K. Smith (Marcel Dekker, New York), Chap. 42, pp. 975–992.Google Scholar
Louër, D., and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr. JACGAR 21, 430437. acr, JACGAR CrossRefGoogle Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr. JACGAR 32, 3650. acr, JACGAR CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “A FORTRAN program for crystallographic data evaluation,” Natl. Bur. Stand. (U. S.) Tech. Note 1141. [NBS*AIDS83 is an expanded version of NBS*AIDS80.]Google Scholar
Perret, R. (1988). “Etudes cristallochimiques des monophosphates triples M2IMIIIMIV(PO4)3 (MI=Na, K; MIII=Cr, Fe, Ga, Rh; MIV=Ti,Sn, Zr, Hf),J. Less-Common Met. JCOMAH 144, 195200. jco, JCOMAH CrossRefGoogle Scholar
Perret, R., and Boudjada, A. (1977). “Contribution a` l’étude des monophosphates de type langbéinite,” Comptes Rendus Acad. Sci. Paris ZZZZZZ C284, 4144.Google Scholar
Perret, R., and Boudjada, A. (1979). “Nouvelles familles de monophosphates de type langbéinite,” Comptes Rendus Acad. Sci. Paris ZZZZZZ C288, 525527.Google Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” Abstracts of the meeting Powder Diffraction, Toulouse, France, pp. 127–128.Google Scholar
Rodriguez-Carvajal, J., and Roisnel, T. (1998). “FULLPROF.98 and WINPLOTR New Windows 95/NT applications for diffraction,” Commission on Powder Diffraction, International Union of Crystallography, Newsletter No. 20, 35–36.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction pattern and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. acr, JACGAR CrossRefGoogle Scholar
Wulff, H., Guth, U., and Loescher, B. (1992). “The crystal structure of K2REZr(PO4)3 (RE=Y, Gd) isotypic with langbeinite,” Powder Diffr. PODIE2 7, 103106. pdj, PODIE2 CrossRefGoogle Scholar
Zemann, A., and Zemann, J. (1957). “Die Kristallstruktur von langbeinit, K2Mg2(SO4)3,Acta Crystallogr. ACCRA9 10, 409413. acc, ACCRA9 CrossRefGoogle Scholar