Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T06:21:44.772Z Has data issue: false hasContentIssue false

Utilisation of the end products of ruminant digestion

Published online by Cambridge University Press:  06 May 2016

D. G. Armstrong
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr
K. L. Blaxter
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr
N. McC. Graham
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr
Get access

Extract

The work of the late Sir Joseph Barcroft and his collaborators (see Elsden & Phillipson, 1948) left little doubt that, in ruminants, the end products of the bacterial dissimilation of dietary carbohydrate included large amounts of the steam-volatile fatty acids—acetic, propionic and butyric acids. More recently, el Shazly (1952a, b) has shown that the steam-volatile fatty acids also arise together with ammonia during the bacterial breakdown of amino-acids in the rumen. Studies by Pfander & Phillipson (1953) and Schambye (1955) further indicate that the acids are absorbed from the digestive tract in amounts that suggest they make a major contribution to the energy requirement of the animal. Quantitative data relative to the amounts absorbed, however, are difficult to obtain. Carroll & Hungate (1954) have calculated that in cattle some 6,000-12,000 Cal. of energy are available from the acids produced by fermentation in the rumen. With sheep, Phillipson & Cuthbertson (1956) have calculated from the results of Schambye (1951a, b; 1955) that at least 600-1,200 Cal. of energy in the form of steam-volatile fatty acids could be absorbed every 24 hrs. Since the fasting heat production of the steer is about 6,500 Cal./24 hrs. and that of the sheep about 1,100 Cal./24 hrs. it is clear that if the fatty acids can be utilised efficiently by the body tissues, they could make a major contribution to the energy requirements, at least those for maintenance.

Type
Research Article
Copyright
Copyright © The British Society of Animal Production 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, D. G., & Blaxter, K. L., 1957. The heat increment of steam-volatile fatty acids in fasting sheep. Brit. J. Nutr.(in the press).Google Scholar
Axelsson, J., 1945. Starkelsesvärdets vetenskapliga underlag. K. LantbrAkad Tidskr.,84:259.Google Scholar
Barcroft, J., Mcanally, R., & Phillipson, A., 1943. Physiological action of acetic acid in living tissues. Nature [Lond.],151:304.Google Scholar
Blaxter, K. L., Graham, N. MCC, & Wainman, F. W., 1956. Some observations on the digestibility of food by sheep, and on related problems. Brit. J. Nutr.,10:69.Google Scholar
Brody, S., Kleiber, M., Mitchell, H. H., Ritzman, E. G., & Forbes, E. B., 1935. Rep. Conf. Energy Metabolism, Nat. Res. Council, Washington.Google Scholar
Carroll, E. J., & Hungate, R. E., 1954. The magnitude of the microbial fermentation in the bovine rumen. Applied Microbiology,2:205.Google Scholar
Elsden, S. R., & Phillipson, A. T., 1948. Ruminant digestion. Annu. Rev. Biochem.,17:705.Google Scholar
Fingerling, G., 1914. Der störkewert der maissilage. Landw. Versuchsstat.,84:149.Google Scholar
Folley, S. J., 1956. The Physiology and Biochemistry of Lactation. London: Oliver & Boyd.Google Scholar
Forbes, E. B., Braman, W. W., Kriss, M., & Swift, R. W., with collaboration of Miller, R. C, French, R. B., Letonoef, T. V., & Sharpless, G. R., 1931. The metabolizable energy and net energy values of corn meal when fed exclusively and in combination with alfalfa hay. j. agric. Res., 43: 1015.Google Scholar
Forbes, E. B., Braman, W. W., Kriss, M., & Swift, R. W., with collaboration of Black, A., Frear, D. E., Kahlenberg, O. J., Mcclure, F. J., & Voris, L., 1933. The associative effects of feeds in relation to the utilization of feed energy. J. agric. Res.,46:753.Google Scholar
Glickman, N., Mitchell, H. H., Lambert, E. H., & Keeton, R. W., 1948. The total specific dynamic action of high protein and high carbohydrate diets on human subjects. J. Nutr.,36:41.CrossRefGoogle ScholarPubMed
James, A. T., & Martin, A. J. P., 1952. Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic to dodecanoic acid. Biochem. J.,50:679.Google Scholar
Jucker, H., 1948. Die Wirkung reiner Kartojfelstärke auf den Fettansatz beim ausgewachsenen Schaf. Thesis, E. T. H., Zurich.Google Scholar
Kellner, O., & Köhler, A., 1900. Untersuchungen über den stoff- und energie-umsatz des erwachsenen rindes bei erhaltungs- und produktionsfutter. Landw. Versuchsstat.,53:1.Google Scholar
Kellner, O., 1905. Die Ernädhrung der I.andwirtschaftlichen Nutztiere. 9th ed. Berlin: Parey.Google Scholar
Kleiber, M., Black, A. L., Brown, M. A., Luick, J., Baxter, C. F., & Tolbert, B. N., 1954. Butyrate as a precursor of milk constituents in the intact dairy cow. J. biol. Chem.,210:239.Google Scholar
Kriss, M., 1931. A comparison of feeding standards for dairy cows, with especial reference to energy requirements. J. Nutr.,4:141.CrossRefGoogle Scholar
Kriss, M., Forbes, E. B., & Miller, R. C, 1934. The specific dynamic effects of protein, fat and carbohydrate as determined with the albino rat at different planes of nutrition. Nutr.,8:509.Google Scholar
Lusk, G., 1931. The Elements of the Science of Nutrition. Philadelphia: Saunders.Google Scholar
Marston, H. R., 1948. The fermentation of cellulose in vitro by organisms from the rumen of sheep. Biochem. J.,42:564.Google Scholar
Møllgaard, H., 1923. Fütterungslehre des Milchviehs. Hannover: M. & H. Schaper.Google Scholar
Pfander, W. H., & Phillipson, A. T., 1953. The rates of absorption of acetic, propionic and n-butyric acids. J. Physiol.,122:102.Google Scholar
Phillipson, A. T., & Cuthbertson, D. P., 1956. Modern concepts of rumen digestion and metabolism. Proc. VII Internat. Congr. Animal Husbandry, Madrid. Google Scholar
Ritzman, E. G., & Benedict, F. G., 1938. Nutritional physiology of the adult ruminant. Carnegie Institution of Washington, Publ. No. 494, Washington, D.C.Google Scholar
Rubner, M., 1902. Die Gesetze des Energieverbrauchs bei der Ernädhrung. Leipzig und Vienna: F. Deuticke. Google Scholar
Schambye, P., 1951a. Volatile acids and glucose in portal blood of sheep. 1. Nord. VetMed.,3:555.Google Scholar
Schambye, P., 1951b. Volatile acids and glucose in portal blood of sheep. 2. Sheep fed hay and hay plus crushed oats. Nord. VetMed.,3:748.Google Scholar
Schambye, P., 1955. Experimental estimation of the portal vein blood flow in sheep. 2. Chronic experiments in cannulated sheep applying infusion and injection methods. Nord. VetMed.,7:1001.Google Scholar
El Shazly, K., 1952a. Degradation of protein in the rumen of the sheep. 1. Some volatile fatty acids, including branched-chain isomers, found in vivo. Biochem. J.,51:640.Google Scholar
El Shazly, K., 1952b. Degradation of protein in the rumen of sheep. 2. The action of rumen microorganisms on amino-acids. Biochem. J.,51:647.Google Scholar
Sjöberg, K., 1956. Metabolism of acetate in the ruminant. Acta Agric. scand.,6:353.Google Scholar