Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T04:26:54.232Z Has data issue: false hasContentIssue false

A NEW DESIGN METHOD FOR GENERATING SURROGATE KINEMATIC TRUSS ORTHOSES TO SUPPORT PATHOLOGICAL GAIT PATTERNS IN HUMAN MODEL SIMULATIONS

Published online by Cambridge University Press:  19 June 2023

Patrick Steck*
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg
David Scherb
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg
Johannes Mayer
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg
Michael Jäger
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg
Jörg Miehling
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg
Harald Völkl
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg
Sandro Wartzack
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg
*
Steck, Patrick, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, steck@mfk.fau.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With increasing life expectancy, the risk of diseases of the central nervous system, such as cancer, strokes, etc., also increases. Strokes often result in injury to the sciatic nerve, which is responsible for controlling the calf muscles (plantar and dorsal flexors). A so-called ankle joint orthosis (AFO) helps to support the pathological gait and to avoid foot drop during gait. Passive orthoses are of particular importance for research, as they do not require additional incoming energy from outside to the orthotic system. However, current passive orthoses are often not personalized. On the one hand, because they usually have only a temporary muscle-building function and, on the other hand, because the individual design process is computationally time consuming and thus expensive. This paper presents a possibility to pre-dimension and pre-design passive orthoses fast and cost-efficiently by reducing the complexity of the model based on volume-optimized truss elements. Therefor a traditional high calculation intensive design procedure is compared with the complexity reduced model to show its effectiviness and the similarity of the results.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Ali, M.H., Smagulov, Z. and Otepbergenov, T. (2021), “Finite element analysis of the CFRP-based 3D printed ankle-foot orthosis”, Procedia Computer Science, Vol. 179, pp. 5562.CrossRefGoogle Scholar
Dutzler, Andreas (2022), “TrussPy Documentation”, available at: https://github.com/adtzlr/trusspy.Google Scholar
Banga, H.K., Kalra, P., Belokar, R.M. and Kumar, R. (2020), “Customized design and additive manufacturing of kids’ ankle foot orthosis”, Rapid Prototyping Journal, Vol. 26 No. 10, pp. 16771685.CrossRefGoogle Scholar
Chu, T.M., Reddy, N.P. and Padovan, J. (1995), “Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis”, Medical Engineering & Physics, Vol. 17 No. 5, pp. 372379.CrossRefGoogle ScholarPubMed
Dhokia, V., Bilzon, J., Seminati, E., Talamas, D.C., Young, M. and Mitchell, W. (2017), “The Design and Manufacture of a Prototype Personalized Liner for Lower Limb Amputees”, Procedia CIRP, Vol. 60, pp. 476481.CrossRefGoogle Scholar
Dickinson, A.S., Steer, J.W. and Worsley, P.R. (2017), “Finite element analysis of the amputated lower limb: A systematic review and recommendations”, Medical Engineering & Physics, Vol. 43, pp. 118.CrossRefGoogle Scholar
Fairclough, H.E., He, L., Pritchard, T.J. and Gilbert, M. (2021), “LayOpt: an educational web-app for truss layout optimization”, Structural and Multidisciplinary Optimization, Vol. 64 No. 4, pp. 28052823.CrossRefGoogle Scholar
Hell, S. (2018), Beiträge zur Analyse und Bewertung von 3D-Spannungssingularitäten mittels einer angereicherten Skalierte-Rand-Finite-Elemente-Methode, Darmstadt.Google Scholar
Jäger, M. and Wartzack, S. (2023), “Efficient Computation of Spatial Truss Structures for Design Optimization Approaches Using Tube-Shaped Thin-Walled Composite Beams”, in Rieser, J., Endress, F., Horoschenkoff, A., Höfer, P., Dickhut, T. and Zimmermann, M. (Eds.), Proceedings of the Munich Symposium on Lightweight Design 2021, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 112.Google Scholar
Banga, Kumar, Kalra, H., M, P.. Belokar, R. and Kumar, R. (2021), “Design and Fabrication of Prosthetic and Orthotic Product by 3D Printing”, in Arazpour, M. (Ed.), Prosthetics and Orthotics, IntechOpen, Erscheinungsort nicht ermittelbar.Google Scholar
Leite, M., Soares, B., Lopes, V., Santos, S. and Silva, M.T. (2019), “Design for personalized medicine in orthotics and prosthetics”, Procedia CIRP, Vol. 84, pp. 457461.CrossRefGoogle Scholar
Mayer, J., Völkl, H. and Wartzack, S. (2022), “Feature-Based Reconstruction of Non-Beam-Like Topology Optimization Design Proposals in Boundary-Representation”, in DS 119: Proceedings of the 33rd Symposium Design for X (DFX2022), 23 September 2022, The Design Society, p. 10.Google Scholar
Miehling, J. (2019), “Musculoskeletal modeling of user groups for virtual product and process development”, Computer methods in biomechanics and biomedical engineering, Vol. 22 No. 15, pp. 12091218.CrossRefGoogle ScholarPubMed
Mills, K., Blanch, P., Chapman, A.R., McPoil, T.G. and Vicenzino, B. (2010), “Foot orthoses and gait: a systematic review and meta-analysis of literature pertaining to potential mechanisms”, British Journal of Sports Medicine, Vol. 44 No. 14, pp. 10351046.CrossRefGoogle Scholar
Mitternacht, J. and Lampe, R. (2006), “Ermittlung funktioneller kinetischer Parameter aus der plantaren Druckverteilungsmessung”, Zeitschrift fur Orthopadie und ihre Grenzgebiete, Vol. 144 No. 4, pp. 410418.CrossRefGoogle Scholar
Reddy, N. P., Point, G., Lam, P. C. and Grotz, R. C. (1985), “Finite element modeling of the ankle-foot orthoses. Proceedings Inter Conf Biomechanics and Clinical Kinesiology of Hand and Foot”.Google Scholar
Öchsner, A. (2021), Classical beam theories of structural mechanics, Springer eBook Collection, Springer, Cham.CrossRefGoogle Scholar
Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Blessing, L.T.M. and Wallace, K. (Eds.) (2007), Engineering design: A systematic approach, 3. ed., Springer, London.CrossRefGoogle Scholar
Pallari, J., Dalgarno, K.W., Munguia, J., Muraru, L., Peeraer, L., Telfer, S. and Woodburn, J. (2010), Design and Additive Fabrication of Foot and Ankle-Foot Orthoses.Google Scholar
Reportlinker (2022), “Prosthetics And Orthotics Market Size, Share & Trend Analysis Report By Type, Prosthetics And Segment Forecasts, 2022 - 2030”, 7 November (accessed 18 November 2022).Google Scholar
Scherb, D., Steck, P., Wartzack, S. and Miehling, J. (2022), “Integration of musculoskeletal and model order reduced FE simulation for passive ankle foot orthosis design”, Porto.Google Scholar
Shahar, F.S., Hameed Sultan, M.T., Lee, S.H., Jawaid, M., Md Shah, A.U., Safri, S.N.A. and Sivasankaran, P.N. (2019), “A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for ankle-foot orthosis”, Journal of the mechanical behavior of biomedical materials, Vol. 99, pp. 169185.CrossRefGoogle ScholarPubMed
Shorter, K.A., Li, Y., Bretl, T. and Hsiao-Wecksler, E.T. (2012), “Modeling, control, and analysis of a robotic assist device”, Mechatronics, Vol. 22 No. 8, pp. 10671077.CrossRefGoogle Scholar
Spaeth, J.P. (2006), “Laser imaging and computer-aided design and computer-aided manufacture in prosthetics and orthotics”, Physical medicine and rehabilitation clinics of North America, Vol. 17 No. 1, pp. 245263.CrossRefGoogle ScholarPubMed
Steck, P., Scherb, D., Miehling, J., Völkl, H. and Wartzack, S. (2022), “Synthesis of passive lightweight orthoses considering humanmachine interaction”, in DS 119: Proceedings of the 33rd Symposium Design for X (DFX2022), 23 September 2022, The Design Society, p. 10.Google Scholar
Štefanovič, B., Michalíková, M., Bednarčíková, L., Trebuňová, M. and Živčák, J. (2021), “Innovative approaches to designing and manufacturing a prosthetic thumb”, Prosthetics and orthotics international, Vol. 45 No. 1, pp. 8184.CrossRefGoogle ScholarPubMed
Syngellakis, S. and Arnold, M.A. (2012), “Modelling considerations in finite element analyses of ankle foot orthoses”, in Brebbia, C.A. and Hernandez, S. (Eds.), Design and Nature VI, 6/11/2012 - 6/13/2012, A Coruna, Spain, WIT PressSouthampton, UK, pp. 183194.CrossRefGoogle Scholar
Taha, Z., Norman, M.S., Omar, S.F.S. and Suwarganda, E. (2016), “A Finite Element Analysis of a Human Foot Model to Simulate Neutral Standing on Ground”, Procedia Engineering, Vol. 147, pp. 240245.CrossRefGoogle Scholar
Tavares, J.M.R.S., Bourauel, C., Geris, L. and Vander Slote, J. (2023), Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II: Selected Papers from the 17th International Symposium CMBBE and 5th Conference on Imaging and Visualization, September 7-9, 2021, Springer eBook Collection, Vol. 38, 1st ed. 2023, Springer International Publishing; Imprint Springer, Cham.Google Scholar
Thalman, C.M., Hertzell, T., Debeurre, M. and Lee, H. (2022), “Multi-degrees-of-freedom soft robotic ankle-foot orthosis for gait assistance and variable ankle support”, Wearable Technologies, Vol. 3, e18.CrossRefGoogle ScholarPubMed
Tian, F., Hefzy, M.S. and Elahinia, M. (2015), “State of the art review of knee-ankle-foot orthoses”, Annals of biomedical engineering, Vol. 43 No. 2, pp. 427441.CrossRefGoogle ScholarPubMed
Totah, D., Kovalenko, I., Saez, M. and Barton, K. (2017), “Manufacturing Choices for Ankle-Foot Orthoses: A Multi-objective Optimization”, Procedia CIRP, Vol. 65, pp. 145150.CrossRefGoogle Scholar
Wang, Y., Li, Z., Wong, D.W.-C., Cheng, C.-K. and Zhang, M. (2018), “Finite element analysis of biomechanical effects of total ankle arthroplasty on the foot”, Journal of Orthopaedic Translation, Vol. 12, pp. 5565.CrossRefGoogle ScholarPubMed
Wong, D.W.-C., Niu, W., Wang, Y. and Zhang, M. (2016), “Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture”, PloS one, Vol. 11 No. 4, e0154435.Google ScholarPubMed