Skip to main content Accessibility help
×
Home

Equivariant Compactifications of Two-Dimensional Algebraic Groups

Published online by Cambridge University Press:  27 October 2014


Ulrich Derenthal
Affiliation:
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Weifengerten 1, 30167 Hannover, Germany, (derenthal@math.uni-hannover.de; loughran@math.uni-hannover.de)
Daniel Loughran
Affiliation:
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Weifengerten 1, 30167 Hannover, Germany, (derenthal@math.uni-hannover.de; loughran@math.uni-hannover.de)

Abstract

We classify generically transitive actions of semi-direct products on ℙ2. Motivated by the program to study the distribution of rational points on del Pezzo surfaces (Manin's conjecture), we determine all (possibly singular) del Pezzo surfaces that are equivariant compactifications of homogeneous spaces for semi-direct products .


Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Arzhantsev, I., Hausen, J., Herppich, E. and Liendo, A., The automorphism group of a variety with torus action of complexity one, Moscow Math J. 14(3) (2014), 429471.Google Scholar
2.Baier, S. and Derenthal, U., Quadratic congruences on average and rational points on cubic surfaces, preprint (arXiv:1205.0373, 2012).Google Scholar
3.Batyrev, V. V. and Manin, Yu. I., Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Annalen 286(1) (1990), 2743.CrossRefGoogle Scholar
4.Batyrev, V. V. and Tschinkel, Yu., Manin's conjecture for toric varieties, J. Alg. Geom. 7(1) (1998), 1553.Google Scholar
5.Batyrev, V. V. and Tschinkel, Yu., Tamagawa numbers of polarized algebraic varieties, in Nombre et répartition de points de hauteur bornée (Paris, 1996), Asterisqué, pp. 299340 (Société Mathématique de France, Paris, 1998).Google Scholar
6.Borel, A., Linear algebraic groups, 2nd edn, Graduate Texts in Mathematics, Volume 126 (Springer, 1991).CrossRefGoogle Scholar
7.Browning, T. D., Quantitative arithmetic of projective varieties, Progress in Mathematics, Volume 277 (Birkhäuser, 2009).CrossRefGoogle Scholar
8.Bruce, J. W. and Wall, C. T. C., On the classification of cubic surfaces, J. Lond. Math. Soc. 19(2) (1979), 245256.CrossRefGoogle Scholar
9.Chambert-Loir, A. and Tschinkel, Yu., On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math. 148(2) (2002), 421452.CrossRefGoogle Scholar
10.Coray, D. F. and Tsfasman, M. A., Arithmetic on singular del Pezzo surfaces, Proc. Lond. Math. Soc. 57(1) (1988), 2587.CrossRefGoogle Scholar
11.Demazure, M. and Pinkham, H. C. (Eds), Séminaire sur les singularités des surfaces, Lecture Notes in Mathematics, Volume 777 (Springer, 1980).CrossRefGoogle Scholar
12.Derenthal, U., Geometry of universal torsors, Doctoral Dissertation, Universitat Gottingen (2006).Google Scholar
13.Derenthal, U., Singular del Pezzo surfaces whose universal torsors are hypersurfaces, Proc. Lond. Math. Soc. 108(3) (2014), 638681.CrossRefGoogle Scholar
14.Derenthal, U. and Loughran, D., Singular del Pezzo surfaces that are equivariant compactifications, J. Math. Sci. 171(6) (2010), 714724.CrossRefGoogle Scholar
15.Dolgachev, I., Lectures on invariant theory, London Mathematical Society Lecture Note Series, Volume 296 (Cambridge University Press, 2003).CrossRefGoogle Scholar
16.Grothendieck, A., Éléments de géométrie algébrique, IV, Étude locale des schémas et des morphismes de schémas, Publ. Math. IHES 20(1) (1964), 5259.CrossRefGoogle Scholar
17.Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, Volume 52 (Springer, 1977).CrossRefGoogle Scholar
18.Hassett, B. and Tschinkel, Yu., Geometry of equivariant compactifications of , Int. Math. Res. Not. 22 (1999), 12111230.CrossRefGoogle Scholar
19.Derenthal, U. and Loughran, D., Singular del Pezzo surfaces that are equivariant compactifications, J. Math. Sci. 171(6) (2010), 714724CrossRefGoogle Scholar
20.Mumford, D., Fogarty, J. and Kirwan, F., Geometric invariant theory, 3rd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Volume 34 (Springer, 1994).CrossRefGoogle Scholar
21.Sakamaki, Y., Automorphism groups on normal singular cubic surfaces with no parameters, Trans. Am. Math. Soc. 362(5) (2010), 26412666.CrossRefGoogle Scholar
22.Tanimoto, S. and Tschinkel, Yu., Height zeta functions of equivariant compactifications of semi-direct products of algebraic groups, in Zeta functions in algebra and geometry, Contemporary Mathematics, Volume 566, pp. 119157 (American Mathematical Society, Providence, RI, 2012).CrossRefGoogle Scholar
23.Ye, Q., On Gorenstein log del Pezzo surfaces. Jpn J. Math. 28(1) (2002), 87136.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 42 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-4sl8v Total loading time: 0.887 Render date: 2020-12-03T04:37:42.447Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 04:06:53 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Equivariant Compactifications of Two-Dimensional Algebraic Groups
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Equivariant Compactifications of Two-Dimensional Algebraic Groups
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Equivariant Compactifications of Two-Dimensional Algebraic Groups
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *