Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T16:04:21.729Z Has data issue: false hasContentIssue false

AGN feedback and the origin and fate of the hot gas in early-type galaxies

Published online by Cambridge University Press:  07 April 2020

Silvia Pellegrini
Affiliation:
Department of Physics and Astronomy, University of Bologna, via Gobetti 93/2, 40129 Bologna, Italy email: silvia.pellegrini@unibo.it
Luca Ciotti
Affiliation:
Department of Physics and Astronomy, University of Bologna, via Gobetti 93/2, 40129 Bologna, Italy email: silvia.pellegrini@unibo.it
Andrea Negri
Affiliation:
Instituto de Astrofísica de Canarias, calle Vía Láctea, E-38205 La Laguna, Tenerife, Spain
Jeremiah P. Ostriker
Affiliation:
Department of Astronomy, Columbia University, 550 West 120th St, New York, NY 10027, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the results of two-dimensional, grid-type hydrodynamical simulations, with parsec-scale central resolution, for the evolution of the hot gas in isolated early-type galaxies (ETGs). The simulations include a physically self-consistent treatment of the mechanical (from winds) and radiative AGN feedback, and were run for a large set of realistic galaxy models. AGN feedback proves to be very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping the star formation at a low level, and the central black hole mass on observed scaling relations. A comparison with recent determinations of the X-ray properties of ETGs in the local universe shows that, at later epochs, AGN feedback does not dramatically alter the gas content originating in stellar recycled material. Thus, the present-day X-ray luminosity is not a robust diagnostic of the impact of AGN activity, within a scenario where the hot gas mostly originates from the stellar population.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Ciotti, L., D’Ercole, A., Pellegrini, S., & Renzini, A., 1991, ApJ, 376, 380CrossRefGoogle Scholar
Ciotti, L., & Ostriker, J. P. 2007, ApJ, 665, 1038CrossRefGoogle Scholar
Ciotti, L., & Ostriker, J. P. 2012, in Hot Interstellar Matter in Elliptical Galaxies, Kim, D.-W., Pellegrini, S., eds., Astrophys. and Space Sci. Library, vol. 378. Springer-Verlag, p. 8CrossRefGoogle Scholar
Ciotti, L., Pellegrini, S., Negri, A., & Ostriker, J. P. 2017, ApJ, 835, 15 (C17)CrossRefGoogle Scholar
Ciotti, L., & Pellegrini, S., 2017, ApJ, 848, 29CrossRefGoogle Scholar
Davis, T. A.et al., 2014, MNRAS, 444, 3427CrossRefGoogle Scholar
Forbes, D. A., Alabi, A., Romanowsky, A. J., et al. 2017, MNRAS, 464, L26CrossRefGoogle Scholar
Gallo, E., Treu, T., Marshall, P. J., et al. 2010, ApJ, 714, 25CrossRefGoogle Scholar
Goulding, A. D., Greene, J. E., Ma, C.-P., et al. 2016, ApJ, 826, 167CrossRefGoogle Scholar
Kim, D.-W., & Fabbiano, G., 2015, ApJ, 812, 127CrossRefGoogle Scholar
Kuntschner, H., et al. 2010, MNRAS, 408, 97CrossRefGoogle Scholar
Nayakshin, S., & Zubovas, K. 2012, MNRAS, 427, 372CrossRefGoogle Scholar
Negri, A., Posacki, S., Pellegrini, S., & Ciotti, L. 2014, MNRAS, 445, 1351CrossRefGoogle Scholar
Negri, A., Pellegrini, S., & Ciotti, L. 2015, MNRAS, 451, 1212CrossRefGoogle Scholar
Pellegrini, S. 2010, ApJ, 717, 640CrossRefGoogle Scholar
Pellegrini, S., Ciotti, L., Negri, A., & Ostriker, J. P. 2018, ApJ, 856, 115CrossRefGoogle Scholar
Yu, Q., & Tremaine, S. 2002, MNRAS, 335, 965CrossRefGoogle Scholar