Hostname: page-component-5d59c44645-lfgmx Total loading time: 0 Render date: 2024-02-24T16:01:56.699Z Has data issue: false hasContentIssue false

Black holes in active galactic nuclei

Published online by Cambridge University Press:  06 January 2010

M. J. Valtonen
Affiliation:
Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 21500 Piikkiö, Finland
S. Mikkola
Affiliation:
Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 21500 Piikkiö, Finland
D. Merritt
Affiliation:
Centre for Computational Relativity and Gravitation, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY 14623, USA
A. Gopakumar
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
H. J. Lehto
Affiliation:
Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 21500 Piikkiö, Finland
T. Hyvönen
Affiliation:
Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 21500 Piikkiö, Finland
H. Rampadarath
Affiliation:
Joint Institute for VLBI in Europe (JIVE), Postbus 2, 7990 AA Dwingeloo, The Netherlands Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands
R. Saunders
Affiliation:
Department of Physics, University of the West Indies, St. Augustine, Trinidad & Tobago
M. Basta
Affiliation:
Astronomical Institute, Academy of Sciences, Fricova 298, 25165 Ondrejov, Czech Republic
R. Hudec
Affiliation:
Astronomical Institute, Academy of Sciences, Fricova 298, 25165 Ondrejov, Czech Republic Czech Technical University in Prague, Faculty of Electrical Engineering, Technick 2, 166 27 Praha 6, Czech Republic
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supermassive black holes are common in centers of galaxies. Among the active galaxies, quasars are the most extreme, and their black hole masses range as high as to 6⋅1010M. Binary black holes are of special interest but so far OJ287 is the only confirmed case with known orbital elements. In OJ287, the binary nature is confirmed by periodic radiation pulses. The period is twelve years with two pulses per period. The last four pulses have been correctly predicted with the accuracy of few weeks, the latest in 2007 with the accuracy of one day. This accuracy is high enough that one may test the higher order terms in the Post Newtonian approximation to General Relativity. The precession rate per period is 39°.1 ± 0°.1, by far the largest rate in any known binary, and the (1.83 ± 0.01)⋅1010M primary is among the dozen biggest black holes known. We will discuss the various Post Newtonian terms and their effect on the orbit solution. The over 100 year data base of optical variations in OJ287 puts limits on these terms and thus tests the ability of Einstein's General Relativity to describe, for the first time, dynamic binary black hole spacetime in the strong field regime. The quadrupole-moment contributions to the equations of motion allows us to constrain the ‘no-hair’ parameter to be 1.0 ± 0.3 which supports the black hole no-hair theorem within the achievable precision.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aarseth, S. J. 2008, in Dynamical Evolution of Dense Stellar Systems, Proceedings of IAU Symp. 246, Eds. Vesperini, E., Giersz, M. & Sills, A., Cambridge Univ. Press, Cambridge, p. 437Google Scholar
Arp, H. 1981, Astrophysical Journal 250, 31Google Scholar
Barker, B. M. & O'Connell, R. F. 1975, PhRvD, 12, 329Google Scholar
Bassani, L., Dean, A. J., & Sembay, S., Astronomy & Astrophysics, 125, 52Google Scholar
Camenzind, M. 1989, in Accretion Disks and Magnetic Fields in Astrophysics, Ed. Belvedere, G., Kluwer, Dordrecht, p. 129Google Scholar
Carter, B. 1970, Phys. Rev. Lett. 26, 331Google Scholar
Comerford, J. M., Gerke, B. F., Newman, J. A., Davis, M., Yan, R., Cooper, M. C., Faber, S. M., Koo, D. C., Coil, A. L., Rosario, D. J., & Dutton, A. A. 2009, Astrophysical Journal, 698, 956Google Scholar
Damour, T. 1982, C. R. Acad. Sci. Paris 294, (II), 1355.Google Scholar
Genzel, R., Schodel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan, D., & Aschenbach, B. 2003, Nature 425, 934Google Scholar
Hawking, S. W. 1971, Phys. Rev. Lett. 26, 1344Google Scholar
Hawking, S. W. 1972, Commun. Math. Phys. 25, 152Google Scholar
Israel, W. 1967, Phys. Rev. 164, 1776Google Scholar
Israel, W. 1968, Commun. Math. Phys. 8, 245Google Scholar
Kidder, L. E. 1995, PhRvD, 52, 821Google Scholar
Lehto, H. J. & Valtonen, M. J. 1996, Astrophysical Journal, 460, 207Google Scholar
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation, W. H. Freeman & Co, New York, p. 876Google Scholar
Rampadarath, H., Valtonen, M. J., & Saunders, R. The Central Engine of Active Galactic Nuclei, Eds. Ho, Luis C. & Wang, Jian-Min, ASP Conf. Ser., 373, 243Google Scholar
Sakimoto, P. J. & Corotini, F. V. 1981, Astrophysical Journal, 247, 19Google Scholar
Salpeter, E. E. 1964, Astrophysical Journal, 140, 796Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, Astronomy & Astrophysics, 24, 337Google Scholar
Sillanpää, A., Haarala, S., Valtonen, M. J., Sundelius, B., & Byrd, G. G. 1988, Astrophysical Journal, 325, 628Google Scholar
Sillanpää, et al. 1996a, Astronomy & Astrophysics, 305, L17Google Scholar
Sillanpää, et al. 1996b, Astronomy & Astrophysics, 315, L13Google Scholar
Sundelius, B., Wahde, M., Lehto, H. J., & Valtonen, M. J. 1996, Blazar Continuum Variability, ASP Conf. Ser., 110, 99Google Scholar
Sundelius, B., Wahde, M., Lehto, H. J., & Valtonen, M. J. 1997, Astrophysical Journal, 484, 180Google Scholar
Thorne, K. S. 1980, Rev. Mod. Phys. D, 31, 1815Google Scholar
Thorne, K. S., Price, R. M., & Macdonald, D. A. 1986, in Black Holes: The Membrane Paradigm, Yale Univ. Press, New HavenGoogle Scholar
Valtonen, M. J. & Lehto, H. J. 1997, Astrophysical Journal, 481, L5Google Scholar
Valtonen, M. J. et al. 2006a, Astrophysical Journal, 643, L9Google Scholar
Valtonen, M. J. et al. 2006b, Astrophysical Journal, 646, 36Google Scholar
Valtonen, M. J. 2007, Astrophysical Journal, 659, 1074Google Scholar
Valtonen, M. J., Kidger, M., Lehto, H., & Poyner, G. 2008b, Astronomy & Astrophysics, 477, 407Google Scholar
Valtonen, M. J. 2008, RevMexA&Ap, 32, 22Google Scholar
Valtonen, M. J. et al. , 2008c, Nature, 452, 851Google Scholar
Valtonen, M. J., Mikkola, S., Merritt, D., Gopakumar, A., Lehto, H. J., Hyvönen, T., Rampadarath, H., Saunders, R., Basta, M., & Hudec, R. 2009, Astrophysical Journal, in pressGoogle Scholar
Vestergaard, M., Fan, X., Tremonti, C. A., Osmer, P. O., & Richards, G. T. 2008, Astrophysical Journal, 674, L1Google Scholar
Vestergaard, M. & Osmer, P. S. 2009, Astrophysical Journal, 699, 8Google Scholar
Volonteri, M., Miller, J. M., & Dotti, M. 2009, Astrophysical Journal, 703, L86Google Scholar
Wex, N. & Kopeikin, S. M. 1999, Astrophysical Journal, 514, 388Google Scholar
Will, C. M. 2008, Astrophysical Journal 674, L25-L28.Google Scholar
Wu, J., Zhou, X., Wu, X.-B., Liu, F.-K., Peng, B., Ma, J., Wu, Z., Jiang, Z., & Chen, J., 2006, Astronomical Journal, 132, 1256.Google Scholar
Zeldovich, Ya. B. 1964, Sov. Phys. Doklady, 9, 195Google Scholar