Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T04:24:13.079Z Has data issue: false hasContentIssue false

Exploring the early Universe with extremely metal-poor stars

Published online by Cambridge University Press:  09 May 2016

Terese T. Hansen
Affiliation:
Landessternwarte, Heidelberg University Königstuhl 12, 69117 Heidelberg, Germany email: thansen@lsw.uni-heidelberg.de
Norbert Christlieb
Affiliation:
Landessternwarte, Heidelberg University Königstuhl 12, 69117 Heidelberg, Germany email: thansen@lsw.uni-heidelberg.de
Camilla J. Hansen
Affiliation:
Dark Cosmology Center, Copenhangen University Juliane Maries vej 30, 2100 Copenhagen, Denmark. email: cjhansen@dark-cosmology.dk
Timothy C. Beers
Affiliation:
Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame Notre Dame, IN 46556, USA email: tbeers@nd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The earliest phases of Galactical chemical evolution and nucleosynthesis can be investigated by studying the old metal-poor stars. It has been recognized that a large fraction of metal-poor stars possess significant over-abundances of carbon relative to iron. Here we present the results of a 23-star homogeneously analyzed sample of metal-poor candidates from the Hamburg/ESO survey. We have derived abundances for a large number of elements ranging from Li to Pb. The sample includes four ultra metal-poor stars ([Fe/H] < −4.0), six CEMP-no stars, five CEMP-s stars, two CEMP-r stars and two CEMP-r/s stars. This broad variety of the sample stars gives us an unique opportunity to explore different abundance patterns at low metallicity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Beers, T. C., & Christlieb, N. 2005, A&A, 43, 531Google Scholar
Bisterzo, S., Gallino, R., Straniero, O., Cristallo, S., & Käppeler, F. 2012, MNRAS, 422, 849Google Scholar
Bonifacio, P., Caffau, E., Spite, M., & et al., 2015, A&A, 579, A28Google Scholar
Chiappini, C., Ekström, S., Meynet, G., & et al., 2008, A&A, 479, L9Google Scholar
Hansen, T. T., Hansen, C. J., Christlieb, N., & et al., 2015a, ApJ, 807, 173Google Scholar
Hansen, T. T., Andersen, J., & Nordström, Bet al., 2015b, A&A, submittedGoogle Scholar
Herwig, F., 2005, ARAA, 43, 435Google Scholar
Hirschi, R., 2007, A&A, 461, 571Google Scholar
Lee, Y. S., Beers, T. C., Masseron, T., et al., 2013, AJ, 146, 132CrossRefGoogle Scholar
Lucatello, S., Tsangarides, S., Beers, T. C., & et al., 2005, ApJ, 625, 825Google Scholar
Maeder, A., Meynet, G. & Chiappini, C., 2015, A&A, 576, A56Google Scholar
Masseron, T., Johnson, J. A., Plez, B., & et al., 2010, A&A, 509, A93Google Scholar
Meynet, G., Ekström, S. & Maeder, A., 2006, A&A, 447, 623Google Scholar
Norris, J. E., Yong, D., Bessell, M. S., & et al., 2013, ApJ, 762, 28Google Scholar
Spite, M., Caffau, E., Bonifacio, P., & et al., 2013, A&A, 552, A107Google Scholar
Umeda, H. & Nomoto, K. 2003, Nature, 422, 871Google Scholar
Yong, D., Norris, J. E., Bessell, M. S., & et al., 2013, ApJ, 762, 26CrossRefGoogle Scholar