Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-17T12:35:26.164Z Has data issue: false hasContentIssue false

Feeding and feedback from little monsters: AGN in dwarf galaxies

Published online by Cambridge University Press:  29 March 2021

Mar Mezcua*
Affiliation:
Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, 08193 Barcelona, Spain email: marmezcua.astro@gmail.com Institut d’Estudis Espacials de Catalunya (IEEC), Carrer Gran Capità, 08034 Barcelona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Detecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alexander, T. & Bar-Or, B. 2017, Nature Astronomy, 1, 0147 CrossRefGoogle Scholar
Baldassare, V. F., Geha, M., & Greene, J. 2018, ApJ, 868, 152 CrossRefGoogle Scholar
Bañados, E., Venemans, B. P., Mazzucchelli, C., et al. 2018, Nature, 553, 473 10.1038/nature25180CrossRefGoogle Scholar
Barai, P. & de Gouveia Dal Pino, E. M. 2019, MNRAS, 487, 5549 10.1093/mnras/stz1616CrossRefGoogle Scholar
Behroozi, P. S. Wechsler, R. H ., & Conroy, C. 2013, ApJ, 770, 57 10.1088/0004-637X/770/1/57CrossRefGoogle Scholar
Bianchi, S., Piconcelli, E., Pérez-Torres, M. Á., et al. 2013, MNRAS, 435, 2335 CrossRefGoogle Scholar
Bower, R. G., Schaye, J., Frenk, C. S., et al. 2017, MNRAS, 465, 32 CrossRefGoogle Scholar
Bradford, J. D., Geha, M. C., Greene, J. E., et al. 2018, ApJ, 861, 50 10.3847/1538-4357/aac88dCrossRefGoogle Scholar
Bromm, V. & Larson, R. B. 2004, ARA&A, 42, 79 Google Scholar
Chilingarian, I. V., Katkov, I. Y., Zolotukhin, I. Y., et al. 2018, ApJ, 863, 1 10.3847/1538-4357/aad184CrossRefGoogle Scholar
Choi, E., Ostriker, J. P., Naab, T., et al. 2017, ApJ, 844, 31 10.3847/1538-4357/aa7849CrossRefGoogle Scholar
Croton, D. J., Springel, V., White, S. D. M., et al. 2006, MNRAS, 365, 11 10.1111/j.1365-2966.2005.09675.xCrossRefGoogle Scholar
Dashyan, G., Silk, J., Mamon, G. A., et al. 2018, MNRAS, 473, 5698 10.1093/mnras/stx2716CrossRefGoogle Scholar
Deason, A., Wetzel, A., & Garrison-Kimmel, S. 2014, ApJ, 794, 115 CrossRefGoogle Scholar
Dickey, C. M., Geha, M., Wetzel, A., et al. 2019, ApJ, 884, 180 CrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Ettori, S., et al. 2000, MNRAS, 318, L65 10.1046/j.1365-8711.2000.03904.xCrossRefGoogle Scholar
Fakhouri, O., Ma, C.-P., & Boylan-Kolchin, M. 2010, MNRAS, 406, 2267 10.1111/j.1365-2966.2010.16859.xCrossRefGoogle Scholar
Farrell, S. A., Webb, N. A., Barret, D., et al. 2009, Nature, 460, 73 10.1038/nature08083CrossRefGoogle Scholar
Filippenko, A. V. & Sargent, W. L. W. 1989, ApJL, 342, L11 10.1086/185472CrossRefGoogle Scholar
Greene, J. E. 2012, Nature Communications, 3, 1304 CrossRefGoogle Scholar
Greene, J. E. & Ho, L. C. 2004, ApJ, 610, 722 10.1086/421719CrossRefGoogle Scholar
Greene, J. E. & Ho, L. C. 2007, ApJ, 670, 92 CrossRefGoogle Scholar
Greene, J. E., Ho, L. C., & Barth, A. J. 2008, ApJ, 688, 159 CrossRefGoogle Scholar
Greene, J. E., Strader, J., & Ho, L. C. 2019, arXiv:1911.09678Google Scholar
Habouzit, M., Volonteri, M., & Dubois, Y. 2017, MNRAS, 468, 3935 CrossRefGoogle Scholar
Hlavacek-Larrondo, J., Fabian, A. C., Edge, A. C., et al. 2012, MNRAS, 421, 1360 CrossRefGoogle Scholar
Hosokawa, T., Yorke, H. W., Inayoshi, K., et al. 2013, ApJ, 778, 178 10.1088/0004-637X/778/2/178CrossRefGoogle Scholar
Jiang, Y.-F., Greene, J. E., Ho, L. C., et al. 2011, ApJ, 742, 68 CrossRefGoogle Scholar
Kaviraj, S. 2014, MNRAS, 437, L41 10.1093/mnrasl/slt136CrossRefGoogle Scholar
Koudmani, S., Sijacki, D., Bourne, M. A., et al. 2019, MNRAS, 484, 2047 10.1093/mnras/stz097CrossRefGoogle Scholar
Kunth, D., Sargent, W. L. W., & Bothun, G. D. 1987, AJ, 93, 29 CrossRefGoogle Scholar
Lemons, S. M., Reines, A. E., Plotkin, R. M. et al. 2015, ApJ, 805, 12 10.1088/0004-637X/805/1/12CrossRefGoogle Scholar
Loeb, A. & Rasio, F. A. 1994, ApJ, 432, 52 10.1086/174548CrossRefGoogle Scholar
Maiolino, R., Russell, H. R., Fabian, A. C., et al. 2017, Nature, 544, 202 CrossRefGoogle Scholar
Marleau, F. R., Clancy, D., Habas, R., et al. 2017, A&A, 602, A28 Google Scholar
Martn-Navarro, I., Brodie, J. P., Romanowsky, A. J., et al. 2018, Nature, 553, 307 10.1038/nature24999CrossRefGoogle Scholar
Martn-Navarro, I. & Mezcua, M. 2018, ApJL, 855, L20 10.3847/2041-8213/aab103CrossRefGoogle Scholar
Martnez-Palomera, J., Lira, P., Bhalla-Ladd, I., et al. 2020, ApJ, 889, 113 CrossRefGoogle Scholar
Matsuoka, Y., Onoue, M., Kashikawa, N., et al. 2019, ApJL, 872, L2 CrossRefGoogle Scholar
McConnell, N. J., Ma, C.-P., Gebhardt, K., et al. 2011, Nature, 480, 215 CrossRefGoogle Scholar
McNamara, B. R., Wise, M., Nulsen, P. E. J., et al. 2000, ApJL, 534, L135 10.1086/312662CrossRefGoogle Scholar
Mezcua, M. 2017, International Journal of Modern Physics D, 26, 1730021 10.1142/S021827181730021XCrossRefGoogle Scholar
Mezcua, M. 2019, Nature Astronomy, 3, 6 CrossRefGoogle Scholar
Mezcua, M., Civano, F., Fabbiano, G., et al. 2016, ApJ, 817, 20 10.3847/0004-637X/817/1/20CrossRefGoogle Scholar
Mezcua, M., Civano, F., Marchesi, S., et al. 2018a, MNRAS, 478, 2576 CrossRefGoogle Scholar
Mezcua, M., Farrell, S. A., Gladstone, J. C., et al. 2013a, MNRAS, 436, 1546 CrossRefGoogle Scholar
Mezcua, M., Hlavacek-Larrondo, J., Lucey, J. R., et al. 2018b, MNRAS, 474, 1342 CrossRefGoogle Scholar
Mezcua, M., Kim, M., Ho, L. C., et al. 2018c, MNRAS, 480, L74 CrossRefGoogle Scholar
Mezcua, M., Roberts, T. P., Lobanov, A. P., et al. 2015, MNRAS, 448, 1893 10.1093/mnras/stv143CrossRefGoogle Scholar
Mezcua, M., Roberts, T. P., Sutton, A. D., et al. 2013b, MNRAS, 436, 3128 CrossRefGoogle Scholar
Mezcua, M., Suh, H., & Civano, F. 2019, MNRAS, 488, 685 CrossRefGoogle Scholar
Moran, E. C., Shahinyan, K., Sugarman, H. R., et al. 2014, AJ, 148, 136 CrossRefGoogle Scholar
Paudel, S., Duc, P. A., & Ree, C. H. 2015, AJ, 149, 114 CrossRefGoogle Scholar
Paudel, S., Sengupta, C., Yoon, S.-J., et al. 2020, AJ, 159, 141 10.3847/1538-3881/ab722fCrossRefGoogle Scholar
Paudel, S., Smith, R., Yoon, S. J., et al. 2018, ApJs, 237, 36 CrossRefGoogle Scholar
Penny, S. J., Masters, K. L., Smethurst, R., et al. 2018, MNRAS, 476, 979 CrossRefGoogle Scholar
Pfister, H., Volonteri, M., Lixin Dai, J., & Colpi, M. 2020, arXiv:2003.08133Google Scholar
Querejeta, M., Schinnerer, E., Garca-Burillo, S., et al. 2016, A&A, 593, A118 Google Scholar
Regan, J. A., Downes, T. P., Volonteri, M., et al. 2019, MNRAS, 486, 3892 CrossRefGoogle Scholar
Reines, A. E., Condon, J. J., Darling, J., et al. 2020, ApJ, 888, 36 10.3847/1538-4357/ab4999CrossRefGoogle Scholar
Reines, A. E., Greene, J. E., & Geha, M. 2013, ApJ, 775, 116 10.1088/0004-637X/775/2/116CrossRefGoogle Scholar
Reines, A. E., Plotkin, R. M., Russell, T. D., et al. 2014, ApJL, 787, L30 10.1088/2041-8205/787/2/L30CrossRefGoogle Scholar
Satyapal, S., Vega, D., Dudik, R. P., et al. 2008, ApJ, 677, 926 CrossRefGoogle Scholar
Schramm, M., Silverman, J. D., Greene, J. E., et al. 2013, ApJ, 773, 150 CrossRefGoogle Scholar
Secrest, N. J., Schmitt, H. R., Blecha, L., et al. 2017, ApJ, 836, 183 CrossRefGoogle Scholar
Silk, J. 2013, ApJ, 772, 112 CrossRefGoogle Scholar
Smethurst, R. J., Lintott, C. J., Simmons, B. D., et al. 2016, MNRAS, 463, 2986 10.1093/mnras/stw2204CrossRefGoogle Scholar
Smolc̆ic’, V., Novak, M., Bondi, M., et al. 2017, A&A, 602, A1 CrossRefGoogle Scholar
Stierwalt, S., Besla, G., Patton, D., et al. 2015, ApJ, 805, 2 CrossRefGoogle Scholar
Tamfal, T., Capelo, P. R., Kazantzidis, S., et al. 2018, ApJL, 864, L19 10.3847/2041-8213/aada4bCrossRefGoogle Scholar
van Wassenhove, S., Volonteri, M., Walker, M. G., et al. 2010, MNRAS, 408, 1139 CrossRefGoogle Scholar
Volonteri, M. 2010, A&Ar, 18, 279 Google Scholar
Volonteri, M. 2012, Sci, 337, 544 CrossRefGoogle Scholar
Volonteri, M., Lodato, G., & Natarajan, P. 2008, MNRAS, 383, 1079 CrossRefGoogle Scholar
Woods, T. E., Agarwal, B., Bromm, V., et al. 2019, PASA, 36, e027 10.1017/pasa.2019.14CrossRefGoogle Scholar
Zubovas, K. 2019, MNRAS, 483, 1957 10.1093/mnras/sty3211CrossRefGoogle Scholar