Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-q6bj7 Total loading time: 0.251 Render date: 2022-12-02T09:03:26.538Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Influence of the Schwabe/Hale solar cycles on climate change during the Maunder Minimum

Published online by Cambridge University Press:  26 February 2010

Hiroko Miyahara
Affiliation:
Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8582, Japan email: hmiya@icrr.u-tokyo.ac.jp
Yusuke Yokoyama
Affiliation:
Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan Department of Earth & Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Institute of Biogeoscience, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka 237-0061, Japan
Yasuhiko T. Yamaguchi
Affiliation:
Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan Department of Earth & Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Institute of Biogeoscience, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka 237-0061, Japan
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have examined the variation of carbon-14 content in annual tree rings, and investigated the transitions of the characteristics of the Schwabe/Hale (11-year/22-year) solar and cosmic-ray cycles during the last 1200 years, focusing mainly on the Maunder and Spoerer minima and the early Medieval Maximum Period. It has been revealed that the mean length of the Schwabe/Hale cycles changes associated with the centennial-scale variation of solar activity level. The mean length of Schwabe cycle had been ~14 years during the Maunder Minimum, while it was ~9 years during the early Medieval Maximum Period. We have also found that climate proxy record shows cyclic variations similar to stretching/shortening Schwabe/Hale solar cycles in time, suggesting that both Schwabe and Hale solar cycles are playing important role in climate change. In this paper, we review the nature of Schwabe and Hale cycles of solar activity and cosmic-ray flux during the Maunder Minimum and their possible influence on climate change. We suggest that the Hale cycle of cosmic rays are amplified during the grand solar minima and thus the influence of cosmic rays on climate change is prominently recognizable during such periods.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Berggren, A.-M., Beer, J., Possnert, G., Aldahan, A., Kubik, P., Christl, M., Johnsen, S. J., Abreu, J., & Vinther, B. M. 2009 Geophys. Res. Lett., 36, L11801CrossRefGoogle Scholar
Friis-Christensen, E. F. & Svensmark, H. 1997 Adv. Space Res., 20, 913CrossRefGoogle Scholar
High, J. D. 1996 Science, 272, 981CrossRefGoogle Scholar
Hoyt, D. V. & Schatten, K. H. 1998 Sol. Phys., 181, 491CrossRefGoogle Scholar
Jokipii, J. R. 1991, in: Sonnet, C.P., Giampapa, M.S. & Matthers, M.S. (eds.), The Sun in Time, (The University of Arizona Press, USA)Google Scholar
Kodera, K. & Kuroda, Y. 2005 J. Geophys. Res., 110, D02111CrossRefGoogle Scholar
Kota, J. & Jokipii, J. R. 2001 Adv. Space Res., 27, 529CrossRefGoogle Scholar
Lean, J. L., Beer, B., & Bradley, R. 1995 Geophys. Res. Lett., 22, 3195CrossRefGoogle Scholar
Miyahara, H., Masuda, K., Muraki, Y., Furuzawa, H., Menjo, H., & Nakamura, T. 2004 Sol. Phys., 224, 317CrossRefGoogle Scholar
Miyahara, H., Masuda, K., Muraki, Y., Kitagawa, H., & Nakamura, T. 2006 J. Geophys. Res., 111, A03103CrossRefGoogle Scholar
Miyahara, H., Masuda, K., Nagaya, K., Kuwana, K., Muraki, Y., & Nakamura, T. 2007 Adv. Space Res., 40, 2060CrossRefGoogle Scholar
Miyahara, H., Yokoyama, Y., & Masuda, K. 2008 Earth Planet. Sci. Lett., 272, 290CrossRefGoogle Scholar
Stuiver, M., Reimer, P., & Braziunas, T.F. 1998 Radiocarbon, 40, 1127CrossRefGoogle Scholar
Svensmark, H. 2007 Astron. Geophys., 48, 118CrossRefGoogle Scholar
Tinsley, B. A. 1996 J. Geophys. Res., 101, 29701CrossRefGoogle Scholar
Usoskin, I. G., Mursula, K., & Kovaltsov, G.A. 2001 A&A, 101, 29701Google Scholar
Vinther, B. M., Johnsen, S. J., Andersen, K. K., Clausen, H. B., & Hansen, A. W. 2003 Geophys. Res. Lett., 30, doi:10.1029/2002GL016193CrossRefGoogle Scholar
You have Access
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of the Schwabe/Hale solar cycles on climate change during the Maunder Minimum
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Influence of the Schwabe/Hale solar cycles on climate change during the Maunder Minimum
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Influence of the Schwabe/Hale solar cycles on climate change during the Maunder Minimum
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *