Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-10T21:41:48.483Z Has data issue: false hasContentIssue false

The interaction between supermassive black holes and globular clusters

Published online by Cambridge University Press:  07 March 2016

Mario Spera
Affiliation:
INAF-Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122, Padova, Italy email: mario.spera@oapd.inaf.it Sapienza-Universitá di Roma, P.le A. Moro 5, I-00165 Rome, Italy
Manuel Arca-Sedda
Affiliation:
Sapienza-Universitá di Roma, P.le A. Moro 5, I-00165 Rome, Italy Universitá di Tor Vergata, Via O. Raimondo 18, I-00173 Rome, Italy
Roberto Capuzzo-Dolcetta
Affiliation:
Sapienza-Universitá di Roma, P.le A. Moro 5, I-00165 Rome, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Almost all galaxies along the Hubble sequence host a compact massive object (CMO) in their center. The CMO can be either a supermassive black hole (SMBH) or a very dense stellar cluster, also known as nuclear star cluster (NSC). Generally, heavier galaxies (mass ≳ 1011 M) host a central SMBH while lighter show a central NSC. Intermediate mass hosts, instead, contain both a NSC and a SMBH. One possible formation mechanisms of a NSC relies on the dry-merger (migratory) scenario, in which globular clusters (GCs) decay toward the center of the host galaxy and merge. In this framework, the absence of NSCs in high-mass galaxies can be imputed to destruction of the infalling GCs by the intense tidal field of the central SMBH. In this work, we report preliminary results of N-body simulations performed using our high-resolution, direct, code HiGPUs, to investigate the effects of a central SMBH on a single GC orbiting around it. By varying either the mass of the SMBH and the mass of the host galaxy, we derived an upper limit to the mass of the central SMBH, and thus to the mass of the host, above which the formation of a NSC is suppressed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Antonini, F. 2013, ApJ, 763, 62Google Scholar
Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., & Merritt, D. 2012, ApJ, 750, 111Google Scholar
Arca-Sedda, M. & Capuzzo-Dolcetta, R. 2014, MNRAS, 444, 37383755Google Scholar
Arca-Sedda, M., Capuzzo-Dolcetta, R., & Spera, M. 2015, submitted to MNRAS (arXiv:1510.01137)Google Scholar
Bekki, K. 2007, PASA, 24, 77Google Scholar
Böker, T., Sarzi, M., McLaughlin, D. E., et al. 2004, AJ, 127, 105Google Scholar
Capuzzo-Dolcetta, R. 1993, ApJ, 415, 616Google Scholar
Capuzzo-Dolcetta, R. & Miocchi, P. 2008, ApJ, 681, 1136Google Scholar
Capuzzo-Dolcetta, R., Spera, M., & Punzo, D. 2013, JCP, 236, 580Google Scholar
Côté, P., Piatek, S., Ferrarese, L., et al. 2006, ApJS, 165, 5794Google Scholar
Dehnen, W. 1993, MNRAS, 265, 250Google Scholar
Graham, A. W. & Spitler, L. R. 2009, MNRAS, 397, 2148Google Scholar
McMillan, P. J. & Dehnen, W. 2007, MNRAS, 378, 541Google Scholar
Milosavljević, M. 2004, ApJ, 605, L13Google Scholar
Schödel, R., Merritt, D., & Eckart, A. 2009, A&A, 502, 91Google Scholar
Scott, N. & Graham, A. W. 2013, ApJ, 763, 76Google Scholar
Tremaine, S. D., Ostriker, J. P., & Spitzer, L. Jr. 1975, ApJ, 196, 407Google Scholar
Turner, M. L., Côté, P., Ferrarese, L., et al. 2012, ApJS, 203, 5CrossRefGoogle Scholar