Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-13T23:41:28.528Z Has data issue: false hasContentIssue false

Local merger rates of double neutron stars

Published online by Cambridge University Press:  30 December 2019

Martyna Chruslinska*
Affiliation:
Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands email: m.chruslinska@astro.ru.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first detection of gravitational waves from a merging double neutron star (DNS) binary implies a much higher rate of DNS coalescences in the local Universe than typically estimated on theoretical grounds. The recent study by Chruslinska et al. (2018) shows that apart from being particularly sensitive to the common envelope treatment, DNS merger rates appear rather robust against variations of several factors probed in their study (e.g. conservativeness of the mass transfer, angular momentum loss, and natal kicks), unless extreme assumptions are made. Confrontation with the improving observational limits may allow to rule out some of the extreme models. To correctly compare model predictions with observational limits one has to account for the other factors that affect the rates. One of those factors relates to the assumed history of star formation and chemical evolution of the Universe and its impact on the final results needs to be better constrained.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X. et al. 2016, ApJ, 832, L21 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B. et al. 2017a, Phys. Rev. Lett., 119, 161101 10.1103/PhysRevLett.119.161101CrossRefGoogle ScholarPubMed
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B. et al. 2017b, Ap. Lett., 848, L12 CrossRefGoogle Scholar
Askar, A., Szkudlarek, M., Gondek-Rosinska, D., Giersz, M. & Bulik, T. 2017, MNRAS, 464, L36 CrossRefGoogle Scholar
Barrett, J. W., Gaebel, S. M., Neijssel, C. J., Vigna-GÃmez, A., Stevenson, S., Berry, C. P. L., Farr, W. M. & Mandel, I. 2018, MNRAS, 477, 4685 CrossRefGoogle Scholar
Belczynski, K., Kalogera, V. & Bulik, T. 2002, ApJ 572, 407 10.1086/340304CrossRefGoogle Scholar
Belczynski, K., Kalogera, V., Rasio, F. A., Taam, R. E., Zezas, A., Bulik, T., Maccarone, T. J. & Ivanova, N. 2008, ApJS, 174, 223 CrossRefGoogle Scholar
Belczynski, K., Bulik, T., Fryer, C. L., Ruiter, A., Valsecchi, F., Vink, J. S. & Hurley, J. R. 2010, ApJ, 714, 1217 CrossRefGoogle Scholar
Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. 2016, Nature, 534, 512 CrossRefGoogle Scholar
Beniamini, P. & Piran, T. 2016, MNRAS, 456, 4089 CrossRefGoogle Scholar
Berger, E. 2014, ARA&A, 52, 43 CrossRefGoogle Scholar
Bray, J. C. & Eldridge, J. J. 2016, MNRAS, 461, 3747 CrossRefGoogle Scholar
Bray, J. C. & Eldridge, J. J. 2018, MNRAS, 480, 5657 CrossRefGoogle Scholar
Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T. & Brinkmann, J. 2004, MNRAS, 351, 1151 CrossRefGoogle Scholar
Boogaard, L. A., Brinchmann, J., Bouché, N., Paalvast, M., Bacon, R., Bouwens, R. J., et al. 2018, ArXiv e-prints, arXiv:1808.04900Google Scholar
Chruslinska, M., Belczynski, K., Klencki, J., & Benacquista, M. 2018a, MNRAS, 474, 2937 CrossRefGoogle Scholar
Chruslinska, M., Nelemans, G. & Belczynski, K. 2018b, ArXiv e-prints, arXiv:1811.03565Google Scholar
Coward, D. M., et al. 2012, MNRAS, 425, 2668 CrossRefGoogle Scholar
de Mink, S. E., Pols, O. R. & Hilditch, R. W. 2007, A&A, 467, 1181 Google Scholar
de Mink, S. E. & Belczynski, K. 2015, ApJ, 814, 58 CrossRefGoogle Scholar
Dominik, M., Belczynski, K., Fryer, C., Holz, D. E., Berti, E., Bulik, T., Mandel, I. & O’Shaughnessy, R. 2012, ApJ, 759, 52 CrossRefGoogle Scholar
Dominik, M., Belczynski, K., Fryer, C., Holz, D. E., Berti, E., Bulik, T., Mandel, I. & O’Shaughnessy, R. 2013, ApJ, 779, 72 CrossRefGoogle Scholar
Eldridge, J. J. & Stanway, E. R. 2016, MNRAS, 462, 3302 CrossRefGoogle Scholar
Eldridge, J. J., Stanway, E. R. & Tang, P. N. 2018, ArXiv e-prints, arXiv:1807.07659Google Scholar
Fong, W., Berger, E., Margutti, R. & Zauderer, B. A. 2015, ApJ, 815, 102 CrossRefGoogle Scholar
Fryer, C. L. & Kusenko, A. 2006, ApJS, 163, 335 CrossRefGoogle Scholar
Giacobbo, N., Mapelli, M. & Spera, M. 2018, MNRAS, 474, 2959 CrossRefGoogle Scholar
Gunn, J. E. & Ostriker, J. P. 1970, ApJ, 160, 979 CrossRefGoogle Scholar
Hobbs, G., Lorimer, D. R., Lyne, A. G. & Kramer, M. 2005, MNRAS, 360, 974 CrossRefGoogle Scholar
Hurley, J. R., Pols, O. R. & Tout, C. A. 2000, MNRAS, 315, 543 CrossRefGoogle Scholar
Ivanova, N.& Taam, R. E. 2004, ApJ, 601, 1058 CrossRefGoogle Scholar
Ivanova, N. et al. 2013, A&AR, 21, 59 Google ScholarPubMed
Janka, H.-T. 2017, ApJ, 837, 84 CrossRefGoogle Scholar
Jones, S., Ropke, F. K., Pakmor, R., Seitenzahl, I. R., Ohlmann, S. T. & Edelmann, P. V. F. 2016, A&A, 593, A72 Google Scholar
Kewley, L. J. & Ellison, S. L. 2008, ApJ, 681, 1183 CrossRefGoogle Scholar
Klencki, J., Moe, M., Gladysz, W., Chruslinska, M., Holz, D. E. & Belczynski, K. 2018, ArXiv e-prints, arXiv:1808.07889Google Scholar
Kruckow, M. U., Tauris, T. M., Langer, N., Kramer, M. & Izzard, R. G. 2018, MNRAS, 481, 1908 CrossRefGoogle Scholar
Lara-López, M. A., Hopkins, A. M., López-Sánchez, A. R., et al. 2013, MNRAS, 434, 451 CrossRefGoogle Scholar
Madau, P. & Dickinson, M. 2014, ARA&A, 52, 415 CrossRefGoogle Scholar
Mapelli, M., Giacobbo, N., Ripamonti, E., & Spera, M. 2017, MNRAS, 472, 2422 CrossRefGoogle Scholar
Mennekens, N. & Vanbeveren, D. 2014, A&A, 564, A134 Google Scholar
Maeder, A. 1992, A&A, 264, 105 Google Scholar
Miyaji, S., Nomoto, K., Yokoi, K. & Sugimoto, D. 1980, PASJ, 32, 303 Google Scholar
Moe, M. & Di Stefano, R. 2017, ApJS, 230, 15 CrossRefGoogle Scholar
Nomoto, K. & Kondo, Y. 1991, ApJ, 367, L19 CrossRefGoogle Scholar
Pavlovskii, K. & Ivanova, N. 2015, MNRAS, 449, 4415 CrossRefGoogle Scholar
Pavlovskii, K., Ivanova, N., Belczynski, K. & Van, K. X. 2017, MNRAS, 465, 2092 CrossRefGoogle Scholar
Peters, P. C. 1964, Phys. Rev., 136, 1224 CrossRefGoogle Scholar
Petrillo, C. E., Dietz, A. & Cavaglia, M. 2013, ApJ, 767, 140 CrossRefGoogle Scholar
Podsiadlowski, P., Langer, N., Poelarends, A. J. T., Rappaport, S., Heger, A. & Pfahl, E. 2004, ApJ, 612, 1044 CrossRefGoogle Scholar
Portegies Zwart, S. F. & Yungelson, L. R. 1998, A&A, 332, 173 Google Scholar
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. 2004, Nature, 428, 724 CrossRefGoogle Scholar
Rodriguez, C. L., Haster, C.-J., Chatterjee, S., Kalogera, V. & Rasio, F. A. 2016, ApJ, 824, L8 CrossRefGoogle Scholar
Sana, H., et al. 2012, Science, 337, 444 CrossRefGoogle Scholar
Schneider, R., Graziani, L., Marassi, S., Spera, M., Mapelli, M., Alparone, M., & Bennassuti, M. d. 2017, MNRAS, 471, L105 CrossRefGoogle Scholar
Stevenson, S., Vigna-Gmez, A., Mandel, I., Barrett, J. W., Neijssel, C. J., Perkins, D. & de Mink, S. E. 2017, Nature Communications, 8, 14906 CrossRefGoogle Scholar
Tauris, T. M., Langer, N., Moriya, T. J., Podsiadlowski, P., Yoon, S.-C., Blinnikov, S. I. 2013, ApJ, 778, L23 CrossRefGoogle Scholar
Tauris, T. M., Langer, N. & Podsiadlowski, P. 2015, MNRAS, 451, 2123 CrossRefGoogle Scholar
Tutukov, A. V. & Yungelson, L. R. 1993, MNRAS, 260, 675 CrossRefGoogle Scholar
van den Heuvel, E. P. J. 2007, in: di Salvo, T., Israel, G. L., Piersant, L., Burderi, L., Matt, G., Tornambe, A. & Menna, M. T. (eds), The Multicolored Landscape of Compact Objects and Their Explosive Origins AIP Conf. Ser. Vol. 924, (Am. Inst. Phys., New York), p. 598 Google Scholar
Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M., 2001 A&A, 369, 574 CrossRefGoogle Scholar