Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T04:51:50.089Z Has data issue: false hasContentIssue false

Modelling the deformability of magnetized neutron stars in the light of future continuous gravitational waves detection

Published online by Cambridge University Press:  27 February 2023

Niccolò Bucciantini
Affiliation:
INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy Dip. di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto F.no, Italy INFN - Sezione di Firenze, Via G. Sansone 1, 50019 Sesto F.no, Italy email: niccolo.bucciantini@inaf.it
Jacopo Soldateschi
Affiliation:
INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy Dip. di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto F.no, Italy INFN - Sezione di Firenze, Via G. Sansone 1, 50019 Sesto F.no, Italy email: niccolo.bucciantini@inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neutron stars are known to host extremely powerful magnetic fields. Among other effects, one of the consequences of harboring such fields is the deformation of the neutron star structure, leading, together with rotation, to the emission of continuous gravitational waves (CGWs). We present an extensive numerical study of magnetized neutron stars in GR with a large variety of different Equations of State (EoSs) and show that it is possible to find simple relations between the magnetic deformation of a neutron star, its mass and radius, that are mostly independent on the EoS or magnetic configuration. We discuss how these relations can be used in conjunction with possible future CGWs detection to set constrains on the EoS and magnetic configurations of NSs (e.g. the presence of a superconducting phase). By carrying out a population synthesis, we estimate the possible CGWs detectability of galactic millisecond pulsars, with third generation GW detectors.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Akmal, A.; Pandharipande, V.R.; Ravenhall, D.G., 1998, Phys. Rev. C, 58, 18041828.CrossRefGoogle Scholar
Antoniadis, J.; Tauris, T.M.; Ozel, F.; Barr, E.; Champion, D.J.; Freire, P.C.C., 2016, arXiv e-prints, arXiv:1605.01665.Google Scholar
Baym, , et al. 2019, ApJ, 885, 42CrossRefGoogle Scholar
Baym, , et al., 2018, Rep. Prog. Phys., 81, 056902 CrossRefGoogle Scholar
Bombaci, I. & Logoteta, D. 2018, A&A, 609, A128 Google Scholar
Breu, C.; Rezzolla, L., 2016, MNRAS, 459, 646656,CrossRefGoogle Scholar
Bucciantini, N.; Del Zanna, L. 2011, A&A, 528, A101–A101.Google Scholar
Cutler, C., 2002, Phys. Rev. D, 66, 084025.CrossRefGoogle Scholar
Faucher-Giguère, C.A.; Loeb, A. 2010, J. Cosmology Astropart. Phys., 2010, 005.CrossRefGoogle Scholar
Fortin, M. et al., 2016, Phys.Rev.C, 94.Google Scholar
Hempel, M. & Schaffner-Bielich, J. 2010, Nucl. Phys. A, 837, 210254 CrossRefGoogle Scholar
LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration, 2022, arXiv e-prints, arXiv:2201.00697Google Scholar
Lorimer, D.R.; et al. 2006, MNRAS, 372, 777800,CrossRefGoogle Scholar
Kiel, P.D., Hurley, J.R., 2009, MNRAS, Google Scholar
Oron, A., 2002, Phys. Rev. D, 66, 023006.CrossRefGoogle Scholar
Pili, A.G.; Bucciantini, N.; Del Zanna, L. 2014, MNRAS, 439, 35413563.CrossRefGoogle Scholar
Soldateschi, J., Bucciantini, N., 2021, Galaxy, 9, 101, SB21Google Scholar
Soldateschi, J.; Bucciantini, N.; Del Zanna, L. 2021, A&A, 654, A162, SBD21Google Scholar
Soldateschi, J.; Bucciantini, N.; Del Zanna, L. 2020, A&A, 640, A44Google Scholar