Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T23:25:26.642Z Has data issue: false hasContentIssue false

Multi-wavelength probes of distant lensed galaxies

Published online by Cambridge University Press:  17 August 2012

Stephen Serjeant*
Affiliation:
Dept. of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK email: s.serjeant@open.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I summarise recent results on multi-wavelength properties of distant lensed galaxies, with a particular focus on Herschel. Submm surveys have already resulted in a breakthrough discovery of an extremely efficient selection technique for strong gravitational lenses. Benefitting from the gravitational magnification boost, blind mm-wave redshifts have been demonstrated on IRAM, SMA and GBT, and follow-up emission line detections have been made of water, [Oiii], [Cii] and other species, revealing the PDR/XDR/CRDR conditions. I also discuss HST imaging of submm lenses, lensed galaxy reconstruction, the prospects for ALMA and e-Merlin and the effects of differential magnification. Many emission line diagnostics are relatively unaffected by differential magnification, but SED-based estimates of bolometric fractions in lensed infrared galaxies are so unreliable as to be useless, unless a lens mass model is available to correct for differential amplification.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Altieri, B., et al. 2010, A&A, 518, L17.Google Scholar
Bolton, A. S., et al. 2006, ApJ, 638, 703CrossRefGoogle Scholar
Cox, P., et al. 2011, ApJ in press (arXiv:1107.2924)Google Scholar
Eales, S. A., et al. 2010, PASP, 122, 499CrossRefGoogle Scholar
Efstathiou, A., Rowan-Robinson, M., & Siebenmorgen, R. 2000, MNRAS, 313, 734CrossRefGoogle Scholar
Egami, E., et al. 2010, A&A, 518, L12.Google Scholar
Frayer, D. T., et al. 2011, ApJL, 726, 22CrossRefGoogle Scholar
Gavazzi, R., et al. 2007, ApJ, 667, 176Google Scholar
Gavazzi, R., et al. 2008, ApJ, 677, 1046CrossRefGoogle Scholar
González-Nuevo, J., et al. 2011, ApJ, submittedGoogle Scholar
Granato, G. L., et al. 2001, MNRAS, 324, 757CrossRefGoogle Scholar
Hopwood, R., et al. 2010, ApJL, 728, 4CrossRefGoogle Scholar
Hopwood, R., et al. 2011, ApJL, 728, 4CrossRefGoogle Scholar
Knudsen, K. K., et al. 2008, MNRAS, 384, 1161CrossRefGoogle Scholar
Lapi, A., et al. 2011, ApJ, in press (arXiv:1108.3911)Google Scholar
Lupu, R., et al. 2010, ApJ submitted (arXiv:1009.5983)Google Scholar
Lupu, R., et al. 2011, in The Molecular Universe, Proceedings of the 280th Symposium of the International Astronomical Union, Toledo, Spain, May 30-June 3, 2011Google Scholar
Myers, S. T., et al. 2003, MNRAS, 341, 1CrossRefGoogle Scholar
Negrello, M., et al. 2007, MNRAS, 377, 1557CrossRefGoogle Scholar
Negrello, M., et al. 2010, Science, 330, 800CrossRefGoogle Scholar
Nenkova, M., Sirocky, M. M., Ivesić, Z., & Elitzur, M. 2008, ApJ, 685, 147CrossRefGoogle Scholar
Oguri, M., et al. 2006, AJ, 132, 999CrossRefGoogle Scholar
Omont, A., et al. 2011, A&A, 530, L3O.Google Scholar
Scott, K. S., et al. 2011, ApJ, 733, 29CrossRefGoogle Scholar
Serjeant, S. 2011, MNRAS submittedGoogle Scholar
Smail, I., et al. 1997, ApJL, 490, L5.Google Scholar
Swinbank, A. M., et al. 2010, Nature, 464, 733CrossRefGoogle Scholar
Treu, T. 2010, ARA&A, 48, 87Google Scholar
Walter, F., et al. 2009, Nature, 457, 699CrossRefGoogle Scholar
Valtchanov, I., et al. 2011, MNRAS, in press (arXiv:1105.3929)Google Scholar
Van der Werf, P. P., et al. 2010, A&A, 518, L42.Google Scholar
Van der Werf, P. P., et al. 2011, ApJ, 741, L38.CrossRefGoogle Scholar