Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T20:09:09.143Z Has data issue: false hasContentIssue false

Nature of star formation in first galaxies

Published online by Cambridge University Press:  20 January 2023

Mahavir Sharma*
Affiliation:
Indian Institute of Technology (IIT) Bhilai, GEC Campus, Sejbahar, Raipur, 492015, India email: mahavir@iitbhilai.ac.in

Abstract

One of the primary foci of research in astrophysics is on developing a rigorous understanding of the first galaxies. This entails studying the physical processes such as accretion, cooling and star formation in first galaxies, and also investigating the consequences of these processes in the present day Universe. We investigate the star formation in the early galaxies and its subsequent evolution using the eagle simulation and find that the star formation has a smooth evolutionary behaviour at low redshifts leading to a main sequence of star formation that can be explained by deterministic models using accretion history as an input. In contrast, at high redshift (>6), most of the galaxies are bursty. At high redshift, instead of exhibiting a main sequence in SFR – Mh plane, they bunch-up around a halo mass of ≈ 109 Mȯ and SFR ≈0.1 Mȯ yr−1. As a consequence, the reionization of the Universe is led by low mass haloes hosting brighter galaxies that are undergoing intense bursts. Furthermore, the bursts in the infant galaxies lead to a poorly mixed interstellar medium in which the stars can form from gas enriched predominantly by a single nucleosynthetic channel. The lower mass subset of the stars formed in first galaxies resemble the carbon enhanced metal poor stars in our Galaxy while the higher mass ones reionized the Universe.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, W., Beers, T. C., Christlieb, N., Norris, J. E., Ryan, S. G., Tsangarides, S., 2007, The Astrophysical Journal, 655, 492 Google Scholar
Beardsley, A. P., et al., 2019, PASA, 36 e050 Google Scholar
Beckwith, S. V. W., et al., 2006, AJ 132, 1729CrossRefGoogle Scholar
Beers, T. C., Christlieb, N., 2005, ARA&A, 43, 531Google Scholar
Behroozi, P. S., Wechsler, R. H., Conroy, C., 2013, ApJ, 770, 57CrossRefGoogle Scholar
Bouché, N., et al., 2010, ApJ, 718, 1001CrossRefGoogle Scholar
Bromm, V., 2013, Reports on Progress in Physics, 76, 112901CrossRefGoogle Scholar
Ceverino, D., Glover, S. C. O., Klessen, R. S., 2017, MNRAS, 470, 2791Google Scholar
Correa, C. A., Wyithe, J. S. B., Schaye, J., Duffy, A. R., 2015, MNRAS, 450, 1514CrossRefGoogle Scholar
Crain, R. A., et al., 2015, MNRAS, 450, 1937CrossRefGoogle Scholar
Davé, R., Finlator, K., Oppenheimer, B. D., 2012, MNRAS, 421, 98Google Scholar
Dekel, A., Mandelker, N., 2014, MNRAS, 444, 2071CrossRefGoogle Scholar
Dekel, A., Zolotov, A., Tweed, D., Cacciato, M., Ceverino, D., Primack, J. R., 2013, MNRAS, 435, 999Google Scholar
Dodelson, S., 2003, Modern cosmologyGoogle Scholar
Frebel, A., Norris, J. E., 2015, ARA &A, 53, 631Google Scholar
Frebel, A., et al., 2006, The Astrophysical Journal, 652, 1585Google Scholar
Gardner, J. P., et al., 2006, Space Science Rev., 123, 485CrossRefGoogle Scholar
Greif, T. H., Glover, S. C., Bromm, V., Klessen, R. S., 2010, The Astrophysical Journal, 716, 510 CrossRefGoogle Scholar
Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., Peng, Y., 2013, ApJ, 772, 119CrossRefGoogle Scholar
McAlpine, S., et al., 2016, Astronomy and Computing, 15, 72CrossRefGoogle Scholar
Mesinger, A., Furlanetto, S., Cen, R., 2011, MNRAS, 411, 955CrossRefGoogle Scholar
Naab, T., Ostriker, J. P., 2017, ARA&A, 55, 59Google Scholar
Neistein, E., Dekel, A., 2008, MNRAS, 383, 615CrossRefGoogle Scholar
Pritchard, J. R., Loeb, A., 2012, Reports on Progress in Physics, 75, 086901CrossRefGoogle Scholar
Santos, M. G., Ferramacho, L., Silva, M. B., Amblard, A., Cooray, A., 2010, MNRAS, 406, 2421CrossRefGoogle Scholar
Schaye, J., et al., 2015, MNRAS, 446, 521Google Scholar
Sharma, M., Theuns, T., 2020, MNRAS, 492, 2418Google Scholar
Sharma, M., Theuns, T., Frenk, C., Bower, R., Crain, R., Schaller, M., Schaye, J., 2016, MNRAS, 458, L94CrossRefGoogle Scholar
Sharma, M., Theuns, T., Frenk, C., Bower, R. G., Crain, R. A., Schaller, M., Schaye, J., 2017, MNRAS, 468, 2176CrossRefGoogle Scholar
Sharma, M., Theuns, T., Frenk, C. S., Cooke, R. J., 2018, MNRAS, 473, 984CrossRefGoogle Scholar
Sharma, M., Theuns, T., Frenk, C., 2019, MNRAS, 482, L145CrossRefGoogle Scholar
Shibuya, T., Ouchi, M., Harikane, Y., 2015, ApJ, 219, 15Google Scholar
Sokasian, A., Abel, T., Hernquist, L. E., 2001, New A, 6, 359CrossRefGoogle Scholar
Springel, V., et al., 2005, Nature, 435, 629CrossRefGoogle Scholar
Vogelsberger, M., et al., 2014, Nature, 509, 177CrossRefGoogle Scholar
Weltman, A., et al., 2020, PASA, 37, e002CrossRefGoogle Scholar
Wise, J. H., Demchenko, V. G., Halicek, M. T., Norman, M. L., Turk, M. J., Abel, T., Smith, B. D., 2014, Monthly Notices of the Royal Astronomical Society, 442, 2560CrossRefGoogle Scholar
Yoon, J., et al., 2018, ApJ, 861, 146Google Scholar
van Haarlem, M. P., et al., 2013, A&A, 556, A2Google Scholar