Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T12:31:51.025Z Has data issue: false hasContentIssue false

The origin and impact of Wolf-Rayet-type mass loss

Published online by Cambridge University Press:  30 November 2022

Andreas A. C. Sander
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12-14, 69120 Heidelberg, Germany email: andreas.sander@uni-heidelberg.de
Jorick S. Vink
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, N. Ireland
Erin R. Higgins
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, N. Ireland
Tomer Shenar
Affiliation:
Anton Pannekoek Institute for Astronomy, Science Park 904, 1098 XH, Amsterdam, The Netherlands
Wolf-Rainer Hamann
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
Helge Todt
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Classical Wolf-Rayet (WR) stars mark an important stage in the late evolution of massive stars. As hydrogen-poor massive stars, these objects have lost their outer layers, while still losing further mass through strong winds indicated by their prominent emission line spectra. Wolf-Rayet stars have been detected in a variety of different galaxies. Their strong winds are a major ingredient of stellar evolution and population synthesis models. Yet, a coherent theoretical picture of their strong mass-loss is only starting to emerge. In particular, the occurrence of WR stars as a function of metallicity (Z) is still far from being understood.

To uncover the nature of the complex and dense winds of Wolf-Rayet stars, we employ a new generation of model atmospheres including a consistent solution of the wind hydrodynamics in an expanding non-LTE situation. With this technique, we can dissect the ingredients driving the wind and predict the resulting mass-loss for hydrogen-depleted massive stars. Our modelling efforts reveal a complex picture with strong, non-linear dependencies on the luminosity-to-mass ratio and Z with a steep, but not totally abrupt onset for WR-type winds in helium stars. With our findings, we provide a theoretical motivation for a population of helium stars at low Z, which cannot be detected via WR-type spectral features. Our study of massive He-star atmosphere models yields the very first mass-loss recipe derived from first principles in this regime. Implementing our first findings in stellar evolution models, we demonstrate how traditional approaches tend to overpredict WR-type mass loss in the young Universe.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Crowther, P. A. & Walborn, N. R. 2011, MNRAS, 416, 1311 CrossRefGoogle Scholar
Gräfener, G. & Hamann, W.-R. 2005, A&A, 432, 633 Google Scholar
Gräfener, G. & Hamann, W.-R. 2008, A&A, 482, 945 Google Scholar
Gräfener, G., Vink, J. S., de Koter, A., et al. 2011, A&A, 535, A56 Google Scholar
Grassitelli, L., Langer, N., Grin, N. J., et al. 2018, A&A, 614, A86 Google Scholar
Hamann, W.-R., Koesterke, L., & Wessolowski, U. 1995, A&A, 299, 151 Google Scholar
Hamann, W.-R. & Gräfener, G. 2003, A&A, 410, 993 Google Scholar
Hamann, W.-R. & Gräfener, G. 2004, A&A, 427, 697 Google Scholar
Higgins, E. R., Sander, A. A. C., Vink, J. S., et al. 2021, MNRAS, 505, 4874 CrossRefGoogle Scholar
Iglesias, C. A. & Rogers, F. J. 1996, ApJ, 464, 943 CrossRefGoogle Scholar
Najarro, F., Hillier, D. J., Stahl, O. 1997, A&A, 326, 1117 Google Scholar
Nugis, T. & Lamers, H. J. G. L. M. 2000, A&A, 360, 227 Google Scholar
Poniatowski, L. G., Sundqvist, J. O., Kee, N. D., et al. 2021, A&A, 647, A151 Google Scholar
Ro, S. 2019, ApJ, 873, 76 CrossRefGoogle Scholar
Sander, A. A. C., Hamann, W.-R., Todt, H., et al. 2017, A&A, 603, A86 Google Scholar
Sander, A. A. C., Vink, J. S., & Hamann, W.-R. 2020, MNRAS, 491, 4406 Google Scholar
Sander, A. A. C. & Vink, J. S. 2020, MNRAS, 499, 873 CrossRefGoogle Scholar
Shenar, T., Gilkis, A., Vink, J. S., et al. 2020, A&A, 634, A79 Google Scholar
Shenar, T., Sana, H., Marchant, P., et al. 2021, A&A, 650, A147 Google Scholar
Vink, J. S. & de Koter, A. 2005, A&A, 442, 587 Google Scholar
Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A, 460, 199 Google Scholar