Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-fsdw5 Total loading time: 0.353 Render date: 2022-01-20T15:15:35.048Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Reanalysis of LIGO black-hole coalescences with alternative prior assumptions

Published online by Cambridge University Press:  29 January 2019

Davide Gerosa
Affiliation:
TAPIR 350-17, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA email: dgerosa@caltech.edu
Salvatore Vitale
Affiliation:
LIGO, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Carl-Johan Haster
Affiliation:
Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada
Katerina Chatziioannou
Affiliation:
Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada
Aaron Zimmerman
Affiliation:
Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a critical reanalysis of the black-hole binary coalescences detected during LIGO’s first observing run under different Bayesian prior assumptions. We summarize the main findings of Vitale et al. (2017) and show additional marginalized posterior distributions for some of the binaries’ intrinsic parameters.

These findings were presented at IAU Symposium 338, held on October 16-19, 2017 in Baton Rouge, LA, USA.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2019 

Footnotes

Einstein Fellow

References

Aasi, J., et al. 2015, CQG, 32, 074001CrossRefGoogle Scholar
Abbott, B. P., et al. 2016a, PRX, 6, 041015Google Scholar
Abbott, B. P., et al. 2016b, PRL, 116, 241103CrossRefGoogle Scholar
Abbott, B. P., et al. 2016c, PRL, 116, 061102CrossRefGoogle Scholar
Abbott, B. P., et al. 2017a, PRL, 118, 221101CrossRefGoogle Scholar
Abbott, B. P., et al. 2017b, APJ, 851, L35CrossRefGoogle Scholar
Abbott, B. P., et al. 2017c, PRL, 119, 141101CrossRefGoogle Scholar
Abbott, B. P., et al. 2017d, PRL, 119, 161101CrossRefGoogle Scholar
Abbott, B. P., et al. 2017e, ApJ, 848, L12CrossRefGoogle Scholar
Acernese, F., et al. 2015, CQG, 32, 024001CrossRefGoogle Scholar
Vallisneri, M., Kanner, J., Williams, R., Weinstein, A., & Stephens, B. 2015, in Journal of Physics Conference Series, Vol. 610, Journal of Physics Conference Series, 012021Google Scholar
Vitale, S., Gerosa, D., Haster, C.-J., Chatziioannou, K., & Zimmerman, A. 2017, PRL 119, 251103CrossRefGoogle Scholar
Williamson, , et al. 2017, PRD, 96, 124041CrossRefGoogle Scholar
You have Access
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reanalysis of LIGO black-hole coalescences with alternative prior assumptions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Reanalysis of LIGO black-hole coalescences with alternative prior assumptions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Reanalysis of LIGO black-hole coalescences with alternative prior assumptions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *