Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T09:50:17.568Z Has data issue: false hasContentIssue false

Rediscovering the origins of the stellar halo with chemical tagging

Published online by Cambridge University Press:  02 August 2018

Sarah L Martell*
Affiliation:
School of Physics University of New South Wales 2052 Sydney, Australia email: s.martell@unsw.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Galactic halo has a complex assembly history, which can be seen in its wealth of kinematic and chemical substructure. Globular clusters lose stars through tidal interactions with the Galaxy and cluster evaporation processes, meaning that they are inevitably a source of halo stars. These “migrants” from globular clusters can be recognized in the halo field by the characteristic light element abundance anticorrelations that are commonly observed only in globular cluster stars, and the number of halo stars that can be chemically tagged to globular clusters can be used to place limits on the formation pathways of those clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Balbinot, E. & Gieles, M. 2017, arXiv:1702.02543Google Scholar
Belokurov, V., Evans, N. W., Irwin, M. J., Hewett, P. C., & Wilkinson, M. I., 2006, ApJ Letters, 637, L29Google Scholar
Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJ Letters, 642, L137Google Scholar
Bullock, J. S. & Johnston, K. V., 2005, ApJ, 635, 931Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010, A&A, 516, A55Google Scholar
D’Ercole, A., D’Antona, F., Ventura, P., Vesperini, E., & McMillan, S. L. W., 2010, MNRAS, 407, 854Google Scholar
De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., et al. 2015, MNRAS, 449, 2604Google Scholar
Decressin, T., Charbonnel, C., & Meynet, G., 2007, A&A, 475, 859Google Scholar
Fall, S. M. & Zhang, Q., 2001, ApJ, 561, 751Google Scholar
Freeman, K. & Bland-Hawthorn, J., 2002, ARA%A, 40, 487Google Scholar
Gilmore, G., Randich, S., Asplund, M., et al. 2012, ESO Messenger, 147, 25Google Scholar
Gnedin, O. Y. & Ostriker, J. P., 1997, ApJ, 474, 223Google Scholar
Helmi, A., Veljanoski, J., Breddels, M. A., Tian, H., & Sales, L. V., 2017, A&A, 598, A58Google Scholar
Jordi, K. & Grebel, E. K., 2010, A&A, 522, A71Google Scholar
Kraft, R. P., 1979, ARA&A, 17, 309Google Scholar
Lind, K., Koposov, S. E., Battistini, C., et al. 2015, A&A, 575, L12Google Scholar
Lindegren, L., Lammers, U., Bastian, U., et al. 2016, A&A, 595, A4Google Scholar
Martell, S. L. & Grebel, E. K., 2010, A&A, 519, A14Google Scholar
Martell, S. L., Smolinski, J. P., Beers, T. C., & Grebel, E. K., 2011, A&A, 534, A136Google Scholar
Martell, S. L., Shetrone, M. D., Lucatello, S., et al. 2016, ApJ, 825, 146Google Scholar
Martell, S. L., Sharma, S., Buder, S., et al. 2017, MNRAS, 465, 3203Google Scholar
Michalik, D., Lindegren, L., & Hobbs, D., 2015, A&A, 574, A115Google Scholar
Milone, A. P., Piotto, G., Renzini, A., et al. 2017, MNRAS, 464, 3636Google Scholar
Navin, C. A., Martell, S. L., & Zucker, D. B., 2015, MNRAS, 453, 531Google Scholar
Navin, C. A., Martell, S. L., & Zucker, D. B., 2016, ApJ, 829, 123Google Scholar
Norris, J. & Freeman, K. C., 1979, ApJ Letters, 230, L179Google Scholar
Odenkirchen, M., Grebel, E. K., Rockosi, C. M., et al. 2001, ApJ Letters, 548, L165Google Scholar
Schiavon, R. P., Zamora, O., Carrera, R., et al. 2017, MNRAS, 465, 501Google Scholar
Tissera, P. B., Beers, T. C., Carollo, D., & Scannapieco, C., 2014, MNRAS, 439, 3128Google Scholar