Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-09T02:49:28.991Z Has data issue: false hasContentIssue false

Star formation laws in extreme starbursts

Published online by Cambridge University Press:  21 March 2013

S. García-Burillo
Affiliation:
Observatorio de Madrid (OAN-IGN) Alfonso XII, 3, 28014-Madrid, Spain email: s.gburillo@oan.es, a.usero@oan.es
A. Usero
Affiliation:
Observatorio de Madrid (OAN-IGN) Alfonso XII, 3, 28014-Madrid, Spain email: s.gburillo@oan.es, a.usero@oan.es
A. Alonso-Herrero
Affiliation:
Instituto de Física de Cantabria (IFCA-UC)39005-Santander, Spain email: aalonso@ifca.unican.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The observational study of star formation laws is paramount to disentangling the physical processes at work on local and global scales in galaxies. To this aim we have expanded the sample of extreme starbursts, represented by local LIRGs and ULIRGs, with high-quality data obtained in the 1-0 line of HCN. The analysis of the new data shows that the star formation efficiency of the dense molecular gas, derived from the FIR/HCN luminosity ratio, is a factor 3-4 higher in extreme starbursts compared to normal galaxies. We find a duality in the Kennicutt-Schmidt laws that is enhanced if we account for the different conversion factor for HCN (αHCN) in extreme starbursts and correct for the unobscured star formation rate in normal galaxies. We find that it is possible to fit the observed differences in the FIR/HCN ratios between normal galaxies and LIRGs/ULIRGs with a common constant star formation rate per free-fall time (SFRff) if we assume that HCN densities are ∼1–2 orders of magnitude higher in LIRGs/ULIRGs, and provided that SFRff∼0.005-0.01 and/or if αHCN is a factor of a few lower than our favored values.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alonso-Herrero, A., Rieke, G. H., Rieke, M. J., et al. 2006, ApJ, 650, 835Google Scholar
Daddi, E., Elbaz, D., Walter, F., et al. 2010, ApJ (Letters), 714, L118CrossRefGoogle Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ, 606, 271CrossRefGoogle Scholar
García-Burillo, S., Usero, A., Alonso-Herrero, A., et al. 2012, A&A, 539, A8Google Scholar
Genzel, R., Tacconi, L. J., Graciá-Carpio, J., et al. 2010, MNRAS, 407, 2091Google Scholar
Graciá-Carpio, J., García-Burillo, S., Planesas, P., et al. 2008, A&A, 479, 703Google Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250CrossRefGoogle Scholar
Krumholz, M. R. & Tan, J. C. 2007, ApJ, 654, 304Google Scholar
Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, ApJ, 745, 69Google Scholar
Papadopoulos, P. P., van der Werf, P., Xilouris, E., Isaak, K. G., & Gao, Y. 2012, ApJ, 751, 10Google Scholar
Schmidt, M. 1959, ApJ, 129, 243CrossRefGoogle Scholar