Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T10:57:30.169Z Has data issue: false hasContentIssue false

Stellar Mergers in Dense Stellar Systems and growth of supermassive black holes

Published online by Cambridge University Press:  13 February 2024

Long Wang*
Affiliation:
School of Physics and Astronomy, Sun Yat-sen University, Daxue Road, Zhuhai, 519082, China CSST Science Center for the Guangdong-Hong Kong-Macau Greater Bay Area, Zhuhai, 519082, China

Abstract

The rapid formation of supermassive black holes (SMBHs) at high redshifts is still a puzzle. One hypothesis is that intermediate-mass black holes (IMBHs) serve as seeds for their formation, which could arise from hierarchical mergers in dense star clusters. There are two possible pathways for IMBH formation: 1) very massive stars may form in young star clusters, such as Pop3 clusters, and evolve into IMBHs within a few million years; 2) multiple stellar-mass black holes can merge into IMBHs in dense nuclear star clusters. Detailed insights into these scenarios can be obtained through high-resolution star-by-star simulations of dense star clusters. Furthermore, upcoming observations of faint quasars, nuclear star clusters, and Pop3 stars with the James Webb Space Telescope (JWST) will offer valuable data to constrain theoretical models and deepen our understanding of the rapid formation of SMBHs.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonini, F., Gieles, M., & Gualandris, A. 2019, Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections. MNRAS, 486(4), 50085021.CrossRefGoogle Scholar
Arca-Sedda, M. & Gualandris, A. 2018, Gravitational wave sources from inspiralling globular clusters in the Galactic Centre and similar environments. MNRAS, 477(4), 44234442.Google Scholar
Bañados, E., Venemans, B. P., Mazzucchelli, C., Farina, E. P., Walter, F., Wang, F., Decarli, R., Stern, D., Fan, X., Davies, F. B., Hennawi, J. F., Simcoe, R. A., Turner, M. L., Rix, H.-W., Yang, J., Kelson, D. D., Rudie, G. C., & Winters, J. M. 2018, An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature, 553(7689), 473476.CrossRefGoogle Scholar
Bovill, M. S., Stiavelli, M., Wiggins, A. I., Ricotti, M., & Trenti, M. 2022, Kindling the First Stars: I. Dependence of Detectability of the First Stars with JWST on the Pop III Stellar Masses. arXiv e-prints, arXiv:2210.10190.Google Scholar
Chon, S., Omukai, K., & Schneider, R. 2021, Transition of the initial mass function in the metal-poor environments. MNRAS, 508(3), 41754192.Google Scholar
Fragione, G., Kocsis, B., Rasio, F. A., & Silk, J. 2022, Repeated Mergers, Mass-gap Black Holes, and Formation of Intermediate-mass Black Holes in Dense Massive Star Clusters. ApJ, 927(2), 231.CrossRefGoogle Scholar
Fragione, G. & Silk, J. 2020, Repeated mergers and ejection of black holes within nuclear star clusters. MNRAS, 498(4), 45914604.CrossRefGoogle Scholar
Giersz, M., Leigh, N., Hypki, A., Lützgendorf, N., & Askar, A. 2015, MOCCA code for star cluster simulations - IV. A new scenario for intermediate mass black hole formation in globular clusters. MNRAS, 454(3), 3150–3165.Google Scholar
Greene, J. E., Strader, J., & Ho, L. C. 2020, Intermediate-Mass Black Holes. ARA&A, 58, 257312.Google Scholar
Habouzit, M., Onoue, M., Bañados, E., Neeleman, M., Anglés-Alcázar, D., Walter, F., Pillepich, A., Davé, R., Jahnke, K., & Dubois, Y. 2022, Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of JWST. MNRAS, 511(3), 37513767.CrossRefGoogle Scholar
Hoyer, N., Pinna, F., Kamlah, A. W. H., Nogueras-Lara, F., Feldmeier-Krause, A., Neumayer, N., Sormani, M. C., Boquien, M., Emsellem, E., Seth, A. C., Klessen, R. S., Williams, T. G., Schinnerer, E., Barnes, A. T., Leroy, A. K., Bonoli, S., Kruijssen, J. M. D., Neumann, J., Sánchez-Blázquez, P., Dale, D. A., Watkins, E. J., Thilker, D. A., Rosolowsky, E., Bigiel, F., Grasha, K., Egorov, O. V., Liu, D., Sandstrom, K. M., Larson, K. L., Blanc, G. A., & Hassani, H. 2023, PHANGS-JWST First Results: A Combined HST and JWST Analysis of the Nuclear Star Cluster in NGC 628. ApJL, 944(2), L25.CrossRefGoogle Scholar
Inayoshi, K., Visbal, E., & Haiman, Z. 2020, The Assembly of the First Massive Black Holes. ARA&A, 58, 2797.Google Scholar
Köhler, K., Langer, N., de Koter, A., de Mink, S. E., Crowther, P. A., Evans, C. J., Gräfener, G., Sana, H., Sanyal, D., Schneider, F. R. N., & Vink, J. S. 2015, The evolution of rotating very massive stars with LMC composition. A&A, 573, A71.Google Scholar
Kormendy, J. & Ho, L. C. 2013, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A, 51(1), 511653.Google Scholar
Kroupa, P., Subr, L., Jerabkova, T., & Wang, L. 2020, Very high redshift quasars and the rapid emergence of supermassive black holes. MNRAS, 498(4), 56525683.Google Scholar
Larkin, M. M., Gerasimov, R., & Burgasser, A. J. 2023, Characterization of Population III Stars with Stellar Atmosphere and Evolutionary Modeling and Predictions of their Observability with the JWST. AJ, 165(1), 2.CrossRefGoogle Scholar
Latif, M. A., Whalen, D., & Khochfar, S. 2022, The Birth Mass Function of Population III Stars. ApJ, 925(1), 28.CrossRefGoogle Scholar
Lynden-Bell, D. & Wood, R. 1968, The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. MNRAS, 138, 495.CrossRefGoogle Scholar
Mapelli, M., Bouffanais, Y., Santoliquido, F., Arca Sedda, M., & Artale, M. C. 2022, The cosmic evolution of binary black holes in young, globular, and nuclear star clusters: rates, masses, spins, and mixing fractions. MNRAS, 511(4), 57975816.Google Scholar
Mapelli, M., Dall’Amico, M., Bouffanais, Y., Giacobbo, N., Arca Sedda, M., Artale, M. C., Ballone, A., Di Carlo, U. N., Iorio, G., Santoliquido, F., & Torniamenti, S. 2021, Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties. MNRAS, 505(1), 339358.Google Scholar
Mukherjee, D., Zhu, Q., Ogiya, G., Rodriguez, C. L., & Trac, H. 2023, Evolution of massive black hole binaries in collisionally relaxed nuclear star clusters - Impact of mass segregation. MNRAS, 518(4), 48014817.Google Scholar
Neumayer, N., Seth, A., & Böker, T. 2020, Nuclear star clusters. A&A Rev., 28(1), 4.Google Scholar
Panamarev, T., Just, A., Spurzem, R., Berczik, P., Wang, L., & Arca Sedda, M. 2019, Direct N-body simulation of the Galactic centre. MNRAS, 484(3), 32793290.Google Scholar
Portegies Zwart, S. F. & McMillan, S. L. W. 2002, The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters. ApJ, 576(2), 899907.CrossRefGoogle Scholar
Rantala, A., Naab, T., Rizzuto, F. P., Mannerkoski, M., Partmann, C., & Lautenschütz, K. 2022, BIFROST: simulating compact subsystems in star clusters using a hierarchical fourth-order forward symplectic integrator code. arXiv e-prints, arXiv:2210.02472.Google Scholar
Rizzuto, F. P., Naab, T., Spurzem, R., Giersz, M., Ostriker, J. P., Stone, N. C., Wang, L., Berczik, P., & Rampp, M. 2021, Intermediate mass black hole formation in compact young massive star clusters. MNRAS, 501(4), 52575273.CrossRefGoogle Scholar
Rose, S. C., Naoz, S., Sari, R., & Linial, I. 2022, The Formation of Intermediate-mass Black Holes in Galactic Nuclei. ApJL, 929(2), L22.Google Scholar
Sakurai, Y., Yoshida, N., Fujii, M. S., & Hirano, S. 2017, Formation of intermediate-mass black holes through runaway collisions in the first star clusters. MNRAS, 472(2), 16771684.CrossRefGoogle Scholar
Stacy, A., Bromm, V., & Lee, A. T. 2016, Building up the Population III initial mass function from cosmological initial conditions. MNRAS, 462(2), 13071328.CrossRefGoogle Scholar
The LIGO Scientific Collaboration, the Virgo Collaboration, & the KAGRA Collaboration 2021, Search for intermediate mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. arXiv e-prints, arXiv:2105.15120.Google Scholar
Wang, L., Fujii, M. S., & Tanikawa, A. 2021, Impact of initial mass functions on the dynamical channel of gravitational wave sources. MNRAS, 504(4), 57785787.CrossRefGoogle Scholar
Wang, L., Iwasawa, M., Nitadori, K., & Makino, J. 2020, PETAR: a high-performance N-body code for modelling massive collisional stellar systems. MNRAS, 497(1), 536555.CrossRefGoogle Scholar
Wang, L., Spurzem, R., Aarseth, S., Giersz, M., Askar, A., Berczik, P., Naab, T., Schadow, R., & Kouwenhoven, M. B. N. 2016, The DRAGON simulations: globular cluster evolution with a million stars. MNRAS, 458(2), 14501465.CrossRefGoogle Scholar
Wu, X.-B., Wang, F., Fan, X., Yi, W., Zuo, W., Bian, F., Jiang, L., McGreer, I. D., Wang, R., Yang, J., Yang, Q., Thompson, D., & Beletsky, Y. 2015, An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature, 518(7540), 512515.CrossRefGoogle ScholarPubMed