Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-j5sqr Total loading time: 0.37 Render date: 2022-10-03T18:24:18.209Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Sunspot and Group Number: Recent advances from historical data

Published online by Cambridge University Press:  03 March 2020

Frédéric Clette
Affiliation:
Royal Observatory of Belgium, 3, avenue Circulaire, 1180 Brussels, Belgium email: frederic.clette@oma.be
José M. Vaquero
Affiliation:
Departamento de Fsica, Universidad de Extremadura, 06071 Mérida, Spain
María Cruz Gallego
Affiliation:
Departamento de Fsica, Universidad de Extremadura, 06071 Badajoz, Spain
Laure Lefèvre
Affiliation:
Royal Observatory of Belgium, 3, avenue Circulaire, 1180 Brussels, Belgium email: frederic.clette@oma.be
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to its unique 400-year duration, the sunspot number is a central reference for understanding the long-term evolution of solar activity and its influence on the Earth environment and climate. Here, we outline current data recovery work. For the sunspot number, we find historical evidence of a disruption in the source observers occurring in 1947–48. For the sunpot group number, recent data confirm the clear southern predominance of sunspots during the Maunder Minimum, while the umbra-penumbra ratio is similar to other epochs. For the Dalton minimum, newly recovered historical observations confirm a higher activity level than in a true Grand Minimum.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Carrasco, V. M. S., Álvarez, J. V., & Vaquero, J. M. 2015, Sol. Phys., 290, 2719 CrossRefGoogle Scholar
Carrasco, V. M. S., & Vaquero, J. M. 2016, Sol. Phys., 291, 2493 CrossRefGoogle Scholar
Carrasco, V. M. S., Garca-Romero, J. M., Vaquero, J. M., et al. 2018a, Astrophys. J., 865, 88 CrossRefGoogle Scholar
Carrasco, V. M. S., Vaquero, J. M., Arlt, R., & Gallego, M. C. 2018b, Sol. Phys., 293, 102 Google Scholar
Chatzistergos, T., Usoskin, I., Kovaltsov, G., Krivova, N.A., & Solanki, S.K. 2017, Astron. & Astrophys., 602, A69 CrossRefGoogle Scholar
Clette, F., Svalgaard, L., Vaquero, J.M., & Cliver, E.W. 2014, Space Sci. Rev., 186, 35 CrossRefGoogle Scholar
Clette, F., & Lefèvre, L. 2016, Sol. Phys., 291, 2629 CrossRefGoogle Scholar
Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., Vaquero, J.M., & Leibacher, J.W. 2016a, Sol. Phys., 291, 2479 Google Scholar
Denig, W. F., & McVaugh, M. R. 2017, Space Weather, 15, 857 CrossRefGoogle Scholar
Friedli, T.K. 2016, Sol. Phys., 291, 2505 CrossRefGoogle Scholar
Hayakawa, H., Iwahashi, K., Tamazawa, H., Toriumi, S., & Shibata, K. 2018, Sol. Phys., 293, 8 CrossRefGoogle Scholar
Hoyt, D.V., & Schatten, K.H. 1998, Sol. Phys., 181, 491 CrossRefGoogle Scholar
Lockwood, M., Owens, M.J., & Barnard, L. 2014 J. Geophys. Res., 119(A7), 5193 Google Scholar
Neuhäuser, R., Arlt, R., & Richter, S. 2018, Astronomische Nachrichten, 339, 219 Google Scholar
Ogurtsov, M. G. 2018, Astronomy Letters, 44, 278 CrossRefGoogle Scholar
Svalgaard, L., Cagnotti, M., & Cortesi, S. 2017, Sol. Phys., 292, 34 CrossRefGoogle Scholar
Usoskin, I. G., Arlt, R., Asvestari, E., et al. 2015, Astron.& Astrophys., 581, A95 CrossRefGoogle Scholar
Vaquero, J. M., Nogales, J. M., & Sánchez-Bajo, F. 2015a, Advances in Space Res., 55, 1546 CrossRefGoogle Scholar
Vaquero, J. M., Kovaltsov, G. A., Usoskin, I. G., Carrasco, V. M. S., & Gallego, M. C. 2015b, Astron.& Astrophys., 577, A71 Google Scholar
Vaquero, J.M., Svalgaard, L., Carrasco, V.M.S., Clette, F., Lefèvre, L., Gallego, M.C., Arlt, R., Aparicio, A.J.P., Richard, J.-G., & Howe, R. 2016 Sol. Phys., 291, 3061 Google Scholar
Wolf, R. 1859, Astron. Mitt. Eidgnöss. Sternwarte Zürich, I (VIII), 66Google Scholar
Zolotova, N. V., & Ponyavin, D. I. 2015, Astrophys. J., 800, 42 CrossRefGoogle Scholar
You have Access
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sunspot and Group Number: Recent advances from historical data
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Sunspot and Group Number: Recent advances from historical data
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Sunspot and Group Number: Recent advances from historical data
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *