Skip to main content
×
×
Home

Super-equipartition fields in simulations of photospheric magnetoconvection

  • Paul J. Bushby (a1)
Abstract

Observations of magnetic fields in the quiet Sun indicate that kilogauss-strength fields can be found in the intergranular lanes. Since the magnetic energy of these localised features greatly exceeds estimates of the kinetic energy of the surrounding granular convection, it is difficult to see how these features could be formed simply by convective flux concentration. Idealised, high-resolution simulations of three-dimensional compressible magnetoconvection are used to investigate the formation of these features numerically. Initially we take a fully developed non-magnetic convective state into which we insert a weak, uniform, vertical magnetic field. Magnetic flux is rapidly swept into the convective downflows, where it is concentrated into localised regions. As the field strength within these regions becomes dynamically significant, the high magnetic pressure leads to partial evacuation (via the convective downflows). Provided that the magnetic Reynolds number is large enough, the strength of the resulting magnetic fields significantly exceeds the (so called) “equipartition” value, with the dynamical effects of the surrounding convection playing an important role in confining these magnetic features to localised regions. These results can be related to the well-known convective collapse instability, although there are some important differences between the two models.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Super-equipartition fields in simulations of photospheric magnetoconvection
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Super-equipartition fields in simulations of photospheric magnetoconvection
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Super-equipartition fields in simulations of photospheric magnetoconvection
      Available formats
      ×
Copyright
References
Hide All
Bushby, P.J. & Houghton, S.M. 2005, MNRAS 362, 313
Grossmann-Doerth, U., Schüssler, M., & Steiner, O. 1998, A&A 337, 928
Lin, H. & Rimmele, T. 1999, ApJ 514, 448
Spruit, H.C. & Zweibel, E.G. 1979, Solar Phys. 62, 15
Stein, R.F. & Nordlund, Å. 2006, ApJ 642, 1246
Weiss, N.O., Proctor, M.R.E., & Brownjohn, D.P. 2002, MNRAS 337, 293
Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., & Linde, T. 2005, A&A 429, 335
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the International Astronomical Union
  • ISSN: 1743-9213
  • EISSN: 1743-9221
  • URL: /core/journals/proceedings-of-the-international-astronomical-union
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed