Hostname: page-component-797576ffbb-k7d4m Total loading time: 0 Render date: 2023-12-09T01:06:24.694Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Toward three-dimensional simulations of stellar core collapse with magnetic fields

Published online by Cambridge University Press:  01 August 2006

M. Liebendörfer
University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland email:†
S. Whitehouse
University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland email:†
T. Fischer
University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland email:†
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In spherical symmetry, very reliable models of stellar core collapse, bounce, and the postbounce phase can be constructed based on general relativistic Boltzmann neutrino transport. However, even if the time-integrated neutrino luminosity in the region between the surface of the protoneutron star and the stalled accretion shock is one or two orders of magnitude larger than the energy of a supernova explosion, it is generally accepted that the net energy transfer is not efficient enough to drive an explosion, unless the fluid instabilities in this regime are taken into account. Complementary to other groups, who are elaborating an extension of the accurate neutrino physics to axisymmetric simulations, we construct efficient parameterizations of the neutrino physics that enable three-dimensional magneto-hydrodynamics simulations that do not constrain the fluid instabilities by artificially imposed symmetries. We evaluate our approximations with respect to spherically symmetric Boltzmann neutrino transport, present preliminary MHD simulations with a resolution of 600 zones cubed, and illustrate the questions that can be addressed by this approach.

Contributed Papers
Copyright © International Astronomical Union 2007


Bethe, H. A. & Wilson, J. R., 1985, ApJ, 295, 14Google Scholar
Blondin, J. M., Mezzacappa, A., & DeMarino, C., 2003, ApJ, 584, 971Google Scholar
Buras, R., Rampp, M., Janka, H.-T., & Kifonidis, K., 2003, Phys. Rev. Lett., 90, 241101Google Scholar
Burrows, A., Livne, E., Dessart, L., Ott, C., & Murphy, J., 2005, arXiv:astro-ph/0510687Google Scholar
Dessart, L., Burrows, A., Ott, C. D., Livne, E., Yoon, S.-Y., & Langer, N., 2006, ApJ, 644, 1063Google Scholar
Fryer, C. L. & Warren, M. S., 2004, ApJ, 601, 391Google Scholar
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A., 1994, ApJ, 435, 339Google Scholar
Kitaura, F. S., Janka, H.-T., & Hillebrandt, W. 2006, A&A, 450, 345Google Scholar
Lattimer, J. M. & Swesty, F. D., 1991, Nucl. Phys. A, 535, 331Google Scholar
Liebendörfer, M., 2005, ApJ, 633, 1042Google Scholar
Liebendörfer, , Mezzacappa, , Thielemann, , Messer, , Hix, , & Bruenn, , 2001, Phys. Rev. D, 63, 103004Google Scholar
Liebendörfer, M., Pen, U., & Thompson, C., 2006, PoS (NIC-IX) 132Google Scholar
Marek, A., Dimmelmeier, H., Janka, H.-T., Müller, E., & Buras, R., 2006, A&A, 445, 273Google Scholar
Pen, U.-L., Arras, P., & Wong, S., 2003, ApJS, 149, 447Google Scholar
Rampp, M. & Janka, H.-T., 2000, ApJ, 539, L33Google Scholar
Sumiyoshi, K., Yamada, S., Suzuki, H., Shen, H., Chiba, S., & Toki, H., 2005, ApJ, 629, 922Google Scholar
Thompson, T. A., Burrows, A., & Pinto, P. A., 2003, ApJ, 592, 434Google Scholar
Woosley, S. E., & Weaver, T. A., 1995, ApJS, 101, 181Google Scholar