Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-28T00:46:57.388Z Has data issue: false hasContentIssue false

Using GAMA and H-ATLAS data to explore the cold dust properties of early-type galaxies

Published online by Cambridge University Press:  17 August 2012

Nicola K. Agius
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE, Lancashire, United Kingdom email: NKAgius@uclan.ac.uk
Anne E. Sansom
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE, Lancashire, United Kingdom email: NKAgius@uclan.ac.uk
Cristina C. Popescu
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE, Lancashire, United Kingdom email: NKAgius@uclan.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hierarchical galaxy formation models predict the development of elliptical galaxies through a combination of the mergers and interactions of smaller galaxies. We are carrying out a study of Early-Type Galaxies (ETGs) using GAMA multi-wavelength and Herschel-ATLAS sub-mm data to understand their intrinsic dust properties. The dust in some ETGs may be a relic of past interactions and mergers of galaxies, or may be produced within the galaxies themselves. With this large dataset we will probe the properties of the dust and its relation to host galaxy properties. This paper presents our criteria for selecting ETGs and explores the usefulness of proxies for their morphology, including optical colour, Sérsic index and Concentration index. We find that a combination of criteria including r band Concentration index, ellipticity and apparent sizes is needed to select a robust sample. Optical and sub-mm parameter diagnostics are examined for the selected ETG sample, and the sub-mm data are fitted with modified Planck functions giving initial estimates for the cold dust temperatures and masses.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Amblard, A., Cooray, A., Serra, P. et al. 2010, A&A, 518, L9.Google Scholar
Baldry, I. K., Glazebrook, K., Brinkmann, J. et al. 2004, ApJ, 600, 681CrossRefGoogle Scholar
Bernardi, M., Shankar, F., Hyde, J. B., Mei, et al. 2010, MNRAS, 2087–2122, 404Google Scholar
Blanton, M. R., Hogg, D. W., Bahcall, N. A. et al. 2003, ApJ, 594, 186CrossRefGoogle Scholar
Bregman, J. N., Hogg, D. E., & Roberts, M. S. 1992, ApJ, 387, 484CrossRefGoogle Scholar
D'Onofrio, M., Valentinuzzi, T., Fasano, G. et al. 2011, ApJ (Letters), 727, L6+CrossRefGoogle Scholar
Driver, S. P., Allen, P. D., Graham, A. W. et al. 2006, MNRAS, 368, 414CrossRefGoogle Scholar
Kaviraj, S., Schawinski, K., Silk, J., & Shabala, S. 2010, ArXiv e-prints, 1008.1583Google Scholar
Kelvin, L. S., Driver, S. P., Robotham, A. S. G. et al. in prepGoogle Scholar
Leeuw, L. L., Sansom, A. E., Robson, E. I. et al. 2004, ApJ, 612, 837CrossRefGoogle Scholar
Leeuw, L. L., Davidson, J., Dowell, C. D., & Matthews, H. E. 2008, ApJ, 677, 249CrossRefGoogle Scholar
Nair, P. B. & Abraham, R. G. 2010, VizieR Online Data CatalogGoogle Scholar
Rowlands, K., Dunne, L., Maddox, et al. 2011, ArXiv e-prints, 1109.6274Google Scholar