Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-27T09:16:09.127Z Has data issue: false hasContentIssue false

A Review of Requirements and Approaches for Realistic Visual Perception in Virtual Reality

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The amount of new virtual reality input and output devices being developed is enormous. Those peripherals offer novel opportunities and possibilities in the industrial context, especially in the product development process. Nevertheless, virtual reality has to face several problems, counteracting reliable use of the technology, especially in ergonomic and aesthetic assessments. In particular, the discrepancies in perception between the real world and virtual reality are of great importance.

Therefore, we discuss these most important issues of current virtual reality technology and highlight approaches to solve them. First, we illustrate the use cases of VR in the product development process. In addition, we show which hardware is currently available for professional use and which issues exist with regard to visual perception and interaction. Derived from the depiction of a perfect virtual reality, we define the requirements to address visual perception and interaction. Subsequently we discuss approaches to solve the issues regarding visual perception and evaluate their suitability to enhance the use of virtual reality technology in engineering design.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Blake, J., Gurocak, H.B. (2009), “Haptic Glove With MR Brakes for Virtual Reality”, IEEE/ASME Transactions on Mechatronics, Vol. 14 No. 5, pp. 606615. https://doi.org/10.1109/TMECH.2008.2010934Google Scholar
Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I. (2001). “An Introduction to 3-D User Interface Design”, Presence: Teleoperators and Virtual Environments, Vol. 10 No. 1, pp. 96108. https://doi.org/10.1162/105474601750182342Google Scholar
Bruder, G., Pusch, A., Steinicke, F. (2012), “Analyzing Effects of Geometric Rendering Parameters on Size and Distance Estimation in On-axis Stereographics”, ACM Symposium on Applied Perception, SAP ’12, Los Angeles, 03.-04.08.2012, ACM, New York, NY, USA, pp. 111118. https://doi.org/10.1145/2338676.2338699.Google Scholar
Carbon, C.-C. (2015), “Wahrnehmungspsychologie”, In: Schütz, A., Brand, M., Selg, H., Lautenbacher, S. (Eds.), Psychologie: Eine Einführung in ihre Grundlagen und Anwendungsfelder. Kohlhammer, Stuttgart, pp. 7384.Google Scholar
Carnegie, K., Rhee, T. (2015), “Reducing Visual Discomfort with HMDs Using Dynamic Depth of Field”, IEEE Computer Graphics and Applications, Vol. 35 No. 5, p. 3441. https://doi.org/10.1109/MCG.2015.98Google Scholar
Carter, T., Seah, S.A., Long, B., Drinkwater, B., Subramanian, S. (2013), “UltraHaptics: Multi-point Mid-air Haptic Feedback for Touch Surfaces”, 26th ACM Symposium on User Interface Software and Technology, UIST ’13, St. Andrews, Scotland, 08.-11.10.2017, ACM, New York, pp. 505–514. https://doi.org/10.1145/2501988.2502018.Google Scholar
Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C. (1992), “The CAVE: Audio Visual Experience Automatic Virtual Environment”, Communications of the ACM, Vol. 35 No. 6, pp. 6472. https://doi.org/10.1145/129888.129892Google Scholar
Cutting, J.E., Vishton, P.M. (1995), “Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth”, In: Epstein, W., Rogers, S., Perception of Space and Motion, Handbook of Perception and Cognition. Academic Press, San Diego, pp. 69117. https://doi.org/10.1016/B978-012240530-3/50005-5Google Scholar
Dörner, R., Broll, W., Grimm, P., Jung, B. (2014), “Virtual und Augmented Reality (VR / AR): Grundlagen und Methoden der Virtuellen und Augmentierten Realität”, Springer, Berlin.Google Scholar
Esser, R., Oppermann, L. Lutter, T. (2016), “Head Mounted Displays in deutschen Unternehmen. Ein Virtual, Augmented und Mixed Reality Check”. Study by Deloitte, Fraunhofer FIT, bitkom, Available at: http://ots.de/m3yKu (08.03.2019).Google Scholar
Feasel, J., Whitton, M.C., Kassler, L., Brooks, F.P., Lewek, M.D. (2011), “The Integrated Virtual Environment Rehabilitation Treadmill System”. IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 19 No. 3, pp. 290297. https://doi.org/10.1109/TNSRE.2011.2120623Google Scholar
Fechter, M., Wartzack, S. (2017), “Natural Finger Interaction for CAD Assembly Modeling”, ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Ohio, USA, 06.-09.08.2017, p. V001T02A041. https://doi.org/10.1115/DETC2017-67555.Google Scholar
Guna, J., Jakus, G., Pogačnik, M., Tomažič, S., Sodnik, J. (2014), “An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking”, Sensors (Basel), Vol. 14 No. 2, p. 37023720. https://doi.org/10.3390/s140203702Google Scholar
Hillaire, S., Lécuyer, A., Cozot, R., Casiez, G. (2007), “Depth-of-field Blur Effects for First-person Navigation in Virtual Environments”, ACM Symposium on Virtual Reality Software and Technology, VRST ’07, Newport Beach, California, 05.-07.11.2007, ACM, New York, NY, USA, pp. 203206. https://doi.org/10.1145/1315184.1315223.Google Scholar
Hillaire, S., Lecuyer, A., Cozot, R., Casiez, G. (2008). “Using an Eye-Tracking System to Improve Camera Motions and Depth-of-Field Blur Effects in Virtual Environments”, 2008 IEEE Virtual Reality Conference, Reno, NE, USA, 08.-12.03.2008, pp. 4750. https://doi.org/10.1109/VR.2008.4480749.Google Scholar
Howard, I.P., Rogers, B.J. (1996), “Binocular Vision and Stereopsis, Oxford University Press”, New York. https://doi.org/10.1093/acprof:oso/9780195084764.001.0001Google Scholar
Interrante, V., Ries, B., Anderson, L. (2006). “Distance Perception in Immersive Virtual Environments, Revisited”, IEEE Virtual Reality Conference (VR 2006), Alexandria, VA, USA, 25.-29.03.2006, pp. 310. https://doi.org/10.1109/VR.2006.52.Google Scholar
Jarvis, C., Løvset, T., Patel, D. (2015), “Revisiting Virtual Reality Training Using Modern Head Mounted Display and Game Engines”, 8th International Conference on Simulation Tools and Techniques, SIMUTools ’15, Athens, Greece, 24.-26.08.2015. ACM, Brüssel, Belgien, pp. 315318. http://doi.org/10.4108/eai.24-8-2015.2261306.Google Scholar
Jerald, J. (2016), “The VR Book: Human-Centered Design for Virtual Reality”, Association for Computing Machinery and Morgan & Claypool, New York, NY, USA, USA. https://doi.org/10.1145/2792790Google Scholar
Kellner, F., Bolte, B., Bruder, G., Rautenberg, U., Steinicke, F., Lappe, M., Koch, R. (2012), “Geometric Calibration of Head-Mounted Displays and its Effects on Distance Estimation”, IEEE Transactions on Visualization and Computer Graphics, Vol. 18 No. 4, pp. 589596. https://doi.org/10.1109/TVCG.2012.45Google Scholar
Langbehn, E., Lubos, P., Bruder, G., Steinicke, F. (2017), “Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR”, IEEE Transactions on Visualization and Computer Graphics, Vol. 23 No. 4, pp. 13891398. https://doi.org/10.1109/TVCG.2017.2657220Google Scholar
Langbehn, E., Steinicke, F. (2018), “Redirected Walking in Virtual Reality”, In: Lee, N. (Ed.), Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_253-1Google Scholar
Mantiuk, R., Bazyluk, B., Tomaszewska, A. (2011), “Gaze-Dependent Depth-of-Field Effect Rendering in Virtual Environments”, In: Ma, M., Oliveira, M.F., Pereira, J.M. (Eds.), Serious Games Development and Applications. SGDA 2011. Lecture Notes in Computer Science, Vol. 6944. Springer, Berlin Heidelberg, pp. 112. https://doi.org/10.1007/978-3-642-23834-5_1.Google Scholar
Matthiesen, S., Meboldt, M., Ruckpaul, A., Mussgnug, M. (2013), “Eye tracking, a method for engineering design research on engineers’ behavior while analyzing technical systems”, 19th International Conference on Engineering Design (ICED13), Design for Harmonies, Vol.7: Human Behaviour in Design, Seoul, Korea, 19.-22.08.2013, pp. 277286.Google Scholar
Mauderer, M., Conte, S., Nacenta, M.A., Vishwanath, D. (2014), “Depth Perception with Gaze-contingent Depth of Field”, SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, Toronto, Ontario, Canada, 26.04.-01.05.2014, ACM, New York, NY, USA, pp. 217226. https://doi.org/10.1145/2556288.2557089.Google Scholar
Moehring, M., Gloystein, A., Doerner, R. (2009), “Issues with Virtual Space Perception within Reaching Distance: Mitigating Adverse Effects on Applications Using HMDs in the Automotive Industry”, 2009 IEEE Virtual Reality Conference, Lafayetta, LA, USA, 14.-18.03.2009, pp. 223226. https://doi.org/10.1109/VR.2009.4811027.Google Scholar
Mohler, B.J., Creem-Regehr, S.H. (2010), “The Effect of Viewing a Self-Avatar on Distance Judgments in an HMD-Based Virtual Environment”, Presence, Vol. 19 No. 3, p. 230242. https://doi.org/10.1162/pres.19.3.230Google Scholar
Mon-Williams, M., Wann, J.P. (1998), “Binocular Virtual Reality Displays: When Problems Do and Don't Occur”, Human Factors, Vol. 40 No. 1, p. 4249. https://doi.org/10.1518/001872098779480622Google Scholar
Nesbitt, K., Nalivaiko, E. (2018), “Cybersickness”, In: Lee, N. (Ed.), Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_252-1Google Scholar
Renner, R.S., Velichkovsky, B.M., Helmert, J.R. (2013), “The Perception of Egocentric Distances in Virtual Environments - A Review”, ACM Computing Surveys, Vol. 46 No. 23, p. 140. https://doi.org/10.1145/2543581.2543590Google Scholar
Renner, R.S., Steindecker, E., Müller, M., Velichkovsky, B.M., Stelzer, R., Pannasch, S., Helmert, J.R. (2015), “The Influence of the Stereo Base on Blind and Sighted Reaches in a Virtual Environment”, ACM Transactions on Applied Perception, Vol. 12 No. 7, p. 118. https://doi.org/10.1145/2724716Google Scholar
Riedl, M. (2012). “Potential eines virtuellen Fahrerplatzmodells in der Fahrzeugkonzeptentwicklung”, Dissertation, Technische Universität München.Google Scholar
Robinett, W., Rolland, J.P. (1991), “Computational model for the stereoscopic optics of a head-mounted display”, SPIE 1457 Stereoscopic Displays and Applications II, 01.08.1991, San Jose, CA, pp. 140160. https://doi.org/10.1117/12.46303.Google Scholar
Sutherland, I.E. (1965), “The Ultimate Display”, IFIPS Congress, New York, NY, USA, 24.-29.05.1965, Macmillan and Co., London, pp. 506508.Google Scholar
Sutherland, I.E. (1968), “A Head-mounted Three Dimensional Display”, Fall Joint Computer Conference, Part I, AFIPS ’68, San Francisco, California, 09.-11.12.1968, ACM, New York, NY, USA, pp. 757764. https://doi.org/10.1145/1476589.1476686.Google Scholar
Utsumi, A., Milgram, P., Takemura, H., Dominio, F. (1994), “Investigation of Errors in Perception of Stereoscopically Presented Virtual Object Locations in Real Display Space”, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 38 No. 4, pp. 250254. https://doi.org/10.1177/154193129403800413Google Scholar
Wilson, P.T., Kalescky, W., MacLaughlin, A., Williams, B. (2016). “VR locomotion: walking > walking in place > arm swinging”, 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Vol. 1, Zhuhai, China, 03.-04.12.2016, ACM, New York, NY, USA, pp. 243249. https://doi.org/10.1145/3013971.3014010.+walking+in+place+>+arm+swinging”,+15th+ACM+SIGGRAPH+Conference+on+Virtual-Reality+Continuum+and+Its+Applications+in+Industry+-+Vol.+1,+Zhuhai,+China,+03.-04.12.2016,+ACM,+New+York,+NY,+USA,+pp.+243–249.+https://doi.org/10.1145/3013971.3014010.>Google Scholar
Witmer, B.G., Sadowski, W.J. (1998), “Nonvisually Guided Locomotion to a Previously Viewed Target in Real and Virtual Environments”, Human Factors Vol. 40 No. 3, pp. 478488. https://doi.org/10.1518/001872098779591340Google Scholar