Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-04T10:37:49.743Z Has data issue: false hasContentIssue false

The senescence syndrome in plants: an overview of phytogerontology

Published online by Cambridge University Press:  05 December 2011

J. R. Hillman*
Affiliation:
Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
S. M. Glidewell
Affiliation:
Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
N. Deighton
Affiliation:
Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
*
*To whom correspondence should be addressed
Get access

Synopsis

The deteriorative processes leading to the death of a population, individual or part of an individual can be genetically programmed or induced by environmental perturbations, physical damage, pests and diseases. Senescence in multicellular plants is typically a phenomenon resulting from cell differentiation and loss of totipotency. Recycling of nutrients released from senescent cells, abscission layer formation, containment of pathogens and dispersal of progeny are crucial aspects of senescence management. Senescence-related autocatalytic changes induced by substances generally thought to regulate senescence may not mirror the sequence of changes occurring naturally through correlative processes in the intact plant. The chloroplast has a key role in reversing senescence-related degradation of other organelles. Conventional symptoms of senescence used in plant sciences have obscured common theories of senescence regulation for all types of organism.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arney, S. E. 1947. The respiration of strawberry leaves attached to the plant. New Phytologist 46, 6876.CrossRefGoogle Scholar
Arrak, A. 1993. Letter. Nature 365, 484.CrossRefGoogle Scholar
Atkin, R. K. & Srivastava, B. I. S. 1969. The changes in soluble protein of excised barley leaves during senescence and kinetin treatment. Physiologia Plantarum 22, 742–50.CrossRefGoogle Scholar
Balz, H. P. 1966. Intrazellulaire lokalisation und funktion von hydrolytischen enzymen bei tabak. Planta 70, 207–36.CrossRefGoogle Scholar
Becana, M. & Klucas, R. V. 1992. Transition metals in legume root nodules: Iron-dependent free radical production increases during nodule senescence. Proceedings of the National Academy of Sciences (USA) 89, 8958–62.CrossRefGoogle ScholarPubMed
Bondi, H. 1993. Letter. Nature 365, 484.CrossRefGoogle Scholar
Bortlik, K., Gut, H. & Matile, P. H. 1987. Yellowing and non-yellowing trees – a comparison of protein and chlorophyll loss in senescent leaves. Botanica Helvetica 97, 323–8.Google Scholar
Brian, P. W., Petty, J. H. P. & Richmond, P. T. 1959. Effects of GA on development of autumn colour and leaf fall of deciduous woody plants. Nature 183, 58–9.CrossRefGoogle Scholar
Butler, R. D. & Simon, E. W. 1972. Ultrastructural aspects of senescence in plants. Advanced Gerontological Research 3, 73129.Google Scholar
Callow, J. A., Callow, M. E. & Woolhouse, H. W. 1972. In vitro protein synthesis, ribosomal RNA synthesis and polyribosomes in senescing leaves of Perilla. Cell Differentiation 1, 7990.CrossRefGoogle Scholar
Colquhoun, A. J. 1974. Studies of the hormonal regulation of leaf senescence. PhD Dissertation, University of Glasgow, UK.Google Scholar
Colquhoun, A. J., Hillman, J. R., Crewe, C. & Bowes, B. G. 1975. An ultrastructural study of the effects of abscisic acid on senescence of leaves of radish (Raphanus sativus L.). Protoplasma 84, 205–21.CrossRefGoogle Scholar
Deighton, N., Lyon, G. D., Johnston, D. J., Glidewell, S. M. & Goodman, B. A. 1994. Are free radical generation and phytoalexin biosynthesis coupled? Proceedings of the Royal Society of Edinburgh 102B, 253–5.Google Scholar
De Leo, P. & Sacher, J. A. 1970. Control of RNase and acid phosphatase by auxin and ABA during senescence of Rhoeo leaf sections. Plant Physiology 46, 806–11.CrossRefGoogle Scholar
Dodge, J. D. 1970. Changes in chloroplast fine structure during the autumnal senescence of Betula leaves. Annals of Botany 34, 817–24.CrossRefGoogle Scholar
Draper, S. R. 1969. Lipid changes in senescing cucumber cotyledons. Phytochemistry 8, 1641–7.CrossRefGoogle Scholar
Elstner, E. F. & Osswald, W. 1994. Mechanisms of oxygen activation during plant stress. Proceedings of the Royal Society of Edinburgh 102B, 131–54.Google Scholar
Estling, R. 1993. Letter. Nature 364, 754.CrossRefGoogle Scholar
Fletcher, R. A. & Osborne, D. J. 1965. Regulation of protein and nucleic acid synthesis by GA during leaf senescence. Nature 207, 1176–7.CrossRefGoogle Scholar
Harris, J. B. & Arnott, H. J. 1973. Effects of senescence on chloroplasts of the tobacco leaf. Tissue & Cell 5, 527–44.CrossRefGoogle ScholarPubMed
Hendry, G. A. F., Atherton, N. M., Seel, W. & Leprince, O. 1994. The occurence of a stable genuine radical accumulating in vivo during natural and induced senescence in a range of plants. Proceedings of the Royal Society of Edinburgh, 102B, 501–3.Google Scholar
Hensel, L. L., Grbić, V., Baumgarten, D. A. & Bleecker, A. B. 1993. Development and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. The Plant Cell 5, 553–64.Google ScholarPubMed
Hillman, J. R. 1992. Opportunities and problems in plant biotechnology – an overview. Proceedings of the Royal Society of Edinburgh 99B, 173–82.Google Scholar
Hipkins, M. F. & Hillman, J. R. 1985. Plant growth substances and the ionic permeability of membranes. In Bopp, M. (Ed.) Plant growth substances, pp. 151–8. Berlin: Springer-Verlag.Google Scholar
Jackson, M. B. & Osborne, D. J. 1972. ABA, auxin and ethylene in explant abscission. Journal of Experimental Botany 23, 849–62.CrossRefGoogle Scholar
Jackson, M. B., Morrow, I. B. & Osborne, D. J. 1972. Abscission and dehiscence in the squirting cucumber, Ecballium elaterium. Regulation by C2H4. Canadian Journal of Botany 50, 1465–71.CrossRefGoogle Scholar
Josephson, B. D. 1993. Letter. Nature 362, 583.CrossRefGoogle Scholar
Kawashima, N., Imai, A. & Tamaki, E. 1967. Studies on protein metabolism in higher plants. III. Changes in the soluble protein components with leaf growth. Plant and Cell Physiology 8, 447–58.Google Scholar
Kende, H. 1964. Preservation of chlorophyll in leaf sections by substances obtained from root exudate. Science 145, 1066–7.CrossRefGoogle Scholar
Kirkwood, T. B. L. 1984. In vitro ageing of animal cells. In: Davies, I. & Sigee, D. C. (Eds) Cell ageing and cell death, pp. 5572, Society for Experimental Biology, Seminar Series 25. Cambridge: Cambridge University Press.Google Scholar
Kumar, G. N. M. & Knowles, N. R. 1993. Changes in lipid peroxidation and lipolytic and free radical scavenging enzymes during the aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiology 102, 115–24.CrossRefGoogle ScholarPubMed
Le Chatelier, H. 1884. A general statement of the laws of chemical equilibrium. Comptes Rendus 99, 786–9.Google Scholar
Leshem, Y. Y. 1992. Plant membranes: a biophysical approach to structure, development and senescence, Ch. 12. London: Kluwer Academic.CrossRefGoogle Scholar
Martin, C. & Thimann, K. J. 1972. Role of protein synthesis in the senescence of leaves. II. The influence of amino acids on senescence. Plant Physiology 50, 432–7.CrossRefGoogle ScholarPubMed
Mayak, S. & Halevy, A. H. 1972. Interrelationships of C2H4 and ABA in the control of rose petal senescence. Plant Physiology 50, 341–6.CrossRefGoogle Scholar
Moore, A. E. & Stone, B. A. 1972. Effect of senescence and hormone treatment on the activity of a β-1,3-glucan hydrolase in Nicotiana glutinosa leaves. Planta 104, 93109.CrossRefGoogle ScholarPubMed
Noodén, L. D. 1988. Whole plant senescence. In: Noodén, L. D. & Leopold, A. C. (Eds) pp. 391439. San Diego: Academic Press.Google Scholar
Osborne, D. J. 1968. Hormonal mechanisms regulating senescence and abscission. In: Wightman, F. & Setterfield, G. (Eds) Biochemistry and physiology of plant growth substances pp. 815–40. Ottawa: Runge Press.Google Scholar
Peterson, L. W. & Huffaker, R. C. 1975. Loss of ribulose 1,5-diphosphate carboxylase and increase in proteolytic activity during senescence of detached primary barley leaves. Plant Physiology 55, 1009–15.CrossRefGoogle ScholarPubMed
Phillips, I. D. J. 1971. Introduction to the biochemistry and physiology of plant growth hormones. New York: McGraw-Hill.Google Scholar
Phillips, D. R., Horton, R. F. & Fletcher, R. A. 1969. RNase and chlorophyllase activities in senescing leaves. Physiologia Plantarum 22, 1050–4.CrossRefGoogle Scholar
Richmond, A. E. & Lang, A. 1957. Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125, 650–1.CrossRefGoogle Scholar
Shaw, M. & Manocha, M. S. 1965. Fine structure in detached senescing wheat leaves. Canadian Journal of Botany 43, 747–55.CrossRefGoogle Scholar
Thomas, H. 1975. Regulation of alanine aminotransferase in leaves of Lolium temulentum during senescence. Zeitschrift für Pflanzenphysiologie 74, 208–18.CrossRefGoogle Scholar
Thomas, H. 1976. Delayed senescence in leaves treated with the protein synthesis inhibitor MDMP. Plant Science Letters 6, 369–77.CrossRefGoogle Scholar
Thomas, H. & Stoddart, J. L. 1975. Separation of chlorophyll degradation from other senescence processes in leaves of a mutant genotype of meadow fescue (Festuca pratensis L.). Plant Physiology 56, 438–41.CrossRefGoogle ScholarPubMed
Udvardy, J., Horvath, M., Kisban, K., Dezsi, L. & Farkas, G. L. 1964. Alteration of enzyme activities in detached leaves and their counteraction by kinetin. Experientia 20, 214–15.CrossRefGoogle ScholarPubMed
Ueda, J & Kato, J. 1980. Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthum L.). Plant Physiology 66, 246–9.CrossRefGoogle Scholar
Wheeler, A. W. 1968. Changes in auxins in expanding and senescent primary leaves of dwarf French bean (Phaseolus vulgaris). Journal of Experimental Botany 19, 102–7.CrossRefGoogle Scholar
Wildman, S. G., Hongladarom, T. & Honda, S. I. 1962. Chloroplasts and mitochondria in living plant cells: cinephotomicrographic studies. Science 138, 434–6.CrossRefGoogle ScholarPubMed
Woolhouse, H. W. 1967. The nature of senescence in plants. Symposium of the Society for Experimental Biology 21, 179213.Google ScholarPubMed
Woolhouse, H. W. 1983. Hormonal control of senescence allied to reproduction in plants. In Mendt, W. J. (Ed.) Strategies of plant reproduction – Beltsville symposia in agricultural research, pp. 201–36. Totawa, NJ: Allanheld, Osmun & Co. Publishers Inc.Google Scholar